BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33969849)

  • 1. Smart scaffolds: shape memory polymers (SMPs) in tissue engineering.
    Pfau MR; Grunlan MA
    J Mater Chem B; 2021 Jun; 9(21):4287-4297. PubMed ID: 33969849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model.
    Pfau MR; Beltran FO; Woodard LN; Dobson LK; Gasson SB; Robbins AB; Lawson ZT; Brian Saunders W; Moreno MR; Grunlan MA
    Acta Biomater; 2021 Dec; 136():233-242. PubMed ID: 34571270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.
    Xie R; Hu J; Hoffmann O; Zhang Y; Ng F; Qin T; Guo X
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):936-945. PubMed ID: 29360569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration.
    Xuan H; Hu H; Geng C; Song J; Shen Y; Lei D; Guan Q; Zhao S; You Z
    Acta Biomater; 2020 Mar; 105():97-110. PubMed ID: 31953195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems.
    Bil M; Kijeńska-Gawrońska E; Głodkowska-Mrówka E; Manda-Handzlik A; Mrówka P
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110675. PubMed ID: 32204102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biodegradable functional water-responsive shape memory polymer for biomedical applications.
    Guo Y; Lv Z; Huo Y; Sun L; Chen S; Liu Z; He C; Bi X; Fan X; You Z
    J Mater Chem B; 2019 Jan; 7(1):123-132. PubMed ID: 32254956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.
    Xie M; Wang L; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6772-81. PubMed ID: 25742188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive Siloxane-Containing Shape-Memory Polymer (SMP) Scaffolds with Tunable Degradation Rates.
    Beltran FO; Houk CJ; Grunlan MA
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1631-1639. PubMed ID: 33667062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration.
    Li G; Li Z; Min Y; Chen S; Han R; Zhao Z
    Small; 2023 Oct; 19(40):e2302927. PubMed ID: 37264732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pore size and spacing on neovascularization of a biodegradble shape memory polymer perivascular wrap.
    Boire TC; Himmel LE; Yu F; Guth CM; Dollinger BR; Werfel TA; Balikov DA; Duvall CL
    J Biomed Mater Res A; 2021 Mar; 109(3):272-288. PubMed ID: 32490564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Roberts CT; Beck SK; Prejean CM; Graul LM; Maitland DJ; Grunlan MA
    J Mater Chem B; 2024 Apr; 12(15):3694-3702. PubMed ID: 38529581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.
    De Nardo L; Bertoldi S; Cigada A; Tanzi MC; Haugen HJ; Farè S
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):119-26. PubMed ID: 23015372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory.
    Fu CY; Chuang WT; Hsu SH
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9702-9713. PubMed ID: 33600161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape memory materials promoting cell adhesion and tissue invasion towards the applications requiring minimally invasive implantation.
    Wang W; Zhao J; Li C; Pang Q
    J Biomater Sci Polym Ed; 2020 Oct; 31(14):1820-1835. PubMed ID: 32567531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape memory polymer (SMP) scaffolds with improved self-fitting properties.
    Pfau MR; McKinzey KG; Roth AA; Graul LM; Maitland DJ; Grunlan MA
    J Mater Chem B; 2021 May; 9(18):3826-3837. PubMed ID: 33979417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.
    Liu W; Wang A; Yang R; Wu H; Shao S; Chen J; Ma Y; Li Z; Wang Y; He X; Li J; Tan H; Fu Q
    Adv Mater; 2022 Nov; 34(46):e2201914. PubMed ID: 35502474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bioinspired and hierarchically structured shape-memory material.
    Cera L; Gonzalez GM; Liu Q; Choi S; Chantre CO; Lee J; Gabardi R; Choi MC; Shin K; Parker KK
    Nat Mater; 2021 Feb; 20(2):242-249. PubMed ID: 32868876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.