These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Indei T; Schieber JD; Córdoba A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of hydrodynamically coupled Brownian harmonic oscillators in a Maxwell fluid. Paul S Eur Phys J E Soft Matter; 2019 Sep; 42(9):122. PubMed ID: 31506736 [TBL] [Abstract][Full Text] [Related]
5. Active Brownian motion with memory delay induced by a viscoelastic medium. Sprenger AR; Bair C; Löwen H Phys Rev E; 2022 Apr; 105(4-1):044610. PubMed ID: 35590653 [TBL] [Abstract][Full Text] [Related]
6. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion. Felderhof BU J Phys Chem B; 2005 Nov; 109(45):21406-12. PubMed ID: 16853777 [TBL] [Abstract][Full Text] [Related]
7. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid. Felderhof BU J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935 [TBL] [Abstract][Full Text] [Related]
8. Long-time tails in the solid-body motion of a sphere immersed in a suspension. Cichocki B; Felderhof BU Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5383-8. PubMed ID: 11089100 [TBL] [Abstract][Full Text] [Related]
9. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related]
10. Quantum Brownian motion: Drude and Ohmic baths as continuum limits of the Rubin model. Das A; Dhar A; Santra I; Satpathi U; Sinha S Phys Rev E; 2020 Dec; 102(6-1):062130. PubMed ID: 33466102 [TBL] [Abstract][Full Text] [Related]
11. Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps. Atakhorrami M; Sulkowska JI; Addas KM; Koenderink GH; Tang JX; Levine AJ; Mackintosh FC; Schmidt CF Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061501. PubMed ID: 16906830 [TBL] [Abstract][Full Text] [Related]
12. Treating inertia in passive microbead rheology. Indei T; Schieber JD; Córdoba A; Pilyugina E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021504. PubMed ID: 22463216 [TBL] [Abstract][Full Text] [Related]
13. Brownian motion in a single relaxation time maxwell fluid. van Zanten JH ; Rufener KP Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5389-96. PubMed ID: 11089101 [TBL] [Abstract][Full Text] [Related]
14. Mechanical analogue for cities. Makris N; Moghimi G; Godat E; Vu T R Soc Open Sci; 2023 Mar; 10(3):220943. PubMed ID: 36908989 [TBL] [Abstract][Full Text] [Related]
15. Rotational Brownian motion of axisymmetric particles in a Maxwell fluid. Volkov VS; Leonov AI Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051113. PubMed ID: 11735906 [TBL] [Abstract][Full Text] [Related]
16. Mean-square displacement of particles in slightly interconnected polymer networks. Sarmiento-Gomez E; Santamaría-Holek I; Castillo R J Phys Chem B; 2014 Jan; 118(4):1146-58. PubMed ID: 24423025 [TBL] [Abstract][Full Text] [Related]
17. Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids. Weiss M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010101. PubMed ID: 23944389 [TBL] [Abstract][Full Text] [Related]
18. Accounting for inertia effects to access the high-frequency microrheology of viscoelastic fluids. Domínguez-García P; Cardinaux F; Bertseva E; Forró L; Scheffold F; Jeney S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):060301. PubMed ID: 25615034 [TBL] [Abstract][Full Text] [Related]
19. Brownian motion of finite-inertia particles in a simple shear flow. Drossinos Y; Reeks MW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031113. PubMed ID: 15903412 [TBL] [Abstract][Full Text] [Related]
20. The effective temperature for the thermal fluctuations in hot Brownian motion. Srivastava M; Chakraborty D J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]