These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33969992)

  • 1. Extending the Classical Continuum Theory to Describe Water Flow through Two-Dimensional Nanopores.
    Sun C; Zhou R; Zhao Z; Bai B
    Langmuir; 2021 May; 37(20):6158-6167. PubMed ID: 33969992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations.
    Jin Z; Firoozabadi A
    J Chem Phys; 2015 Sep; 143(10):104315. PubMed ID: 26374043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic method to study water flow in nanochannels with different wettability.
    Zhang T; Javadpour F; Li X; Wu K; Li J; Yin Y
    Phys Rev E; 2020 Jul; 102(1-1):013306. PubMed ID: 32794987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: insights from molecular dynamics simulations.
    Sahu P; Ali SM
    Phys Chem Chem Phys; 2019 Oct; 21(38):21389-21406. PubMed ID: 31531503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofluidic Transport Theory with Enhancement Factors Approaching One.
    Heiranian M; Aluru NR
    ACS Nano; 2020 Jan; 14(1):272-281. PubMed ID: 31854970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating water transport in carbon nanotubes: a critical review and inclusion of scale effects.
    Karim KE; Barisik M; Bakli C; Kim B
    Phys Chem Chem Phys; 2024 Jul; ():. PubMed ID: 38973497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations.
    Sam A; Hartkamp R; Kannam SK; Sathian SP
    Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall friction should be decoupled from fluid viscosity for the prediction of nanoscale flow.
    Zhou R; Sun C; Bai B
    J Chem Phys; 2021 Feb; 154(7):074709. PubMed ID: 33607889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wettability effect on nanoconfined water flow.
    Wu K; Chen Z; Li J; Li X; Xu J; Dong X
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3358-3363. PubMed ID: 28289228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport behavior of water molecules through two-dimensional nanopores.
    Zhu C; Li H; Meng S
    J Chem Phys; 2014 Nov; 141(18):18C528. PubMed ID: 25399193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscosity of Water Interfaces with Hydrophobic Nanopores: Application to Water Flow in Carbon Nanotubes.
    Shaat M
    Langmuir; 2017 Nov; 33(44):12814-12819. PubMed ID: 29035046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quasi-continuum hydrodynamic model for slit shaped nanochannel flow.
    Bhadauria R; Aluru NR
    J Chem Phys; 2013 Aug; 139(7):074109. PubMed ID: 23968074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study on flow characteristics of gas transport in micro- and nanoscale pores.
    Shen W; Song F; Hu X; Zhu G; Zhu W
    Sci Rep; 2019 Jul; 9(1):10196. PubMed ID: 31308410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical description of molecular permeation via surface diffusion through graphene nanopores.
    Sun C; Luo K; Zhou R; Bai B
    Phys Chem Chem Phys; 2021 Mar; 23(12):7057-7065. PubMed ID: 33690758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-induced water flow through model nanopores.
    Goldsmith J; Martens CC
    Phys Chem Chem Phys; 2009 Jan; 11(3):528-33. PubMed ID: 19283270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes.
    Cheng P; Fornasiero F; Jue ML; Ko W; Li AP; Idrobo JC; Boutilier MSH; Kidambi PR
    Nat Commun; 2022 Nov; 13(1):6709. PubMed ID: 36344569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-osmotic flow through nanopores in thin and ultrathin membranes.
    Melnikov DV; Hulings ZK; Gracheva ME
    Phys Rev E; 2017 Jun; 95(6-1):063105. PubMed ID: 28709345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.