These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33969993)

  • 1.
    Van Raad D; Huber T
    ACS Synth Biol; 2021 May; 10(5):1237-1244. PubMed ID: 33969993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-Free Protein Synthesis for Multiple Site-Specific Incorporation of Noncanonical Amino Acids Using Cell Extracts from RF-1 Deletion E. coli Strains.
    Seki E; Yanagisawa T; Yokoyama S
    Methods Mol Biol; 2018; 1728():49-65. PubMed ID: 29404990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of Orthogonal Pyrrolysyl-tRNA Synthetases in Escherichia coli for the Genetic Encoding of Noncanonical Amino Acids.
    Schmidt MJ; Summerer D
    Methods Mol Biol; 2018; 1728():97-111. PubMed ID: 29404992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids.
    Fan C; Xiong H; Reynolds NM; Söll D
    Nucleic Acids Res; 2015 Dec; 43(22):e156. PubMed ID: 26250114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis.
    Ozawa K; Loh CT
    Methods Mol Biol; 2014; 1118():189-203. PubMed ID: 24395417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient cell-free protein synthesis platform for producing proteins with pyrrolysine-based noncanonical amino acids.
    Ranji Charna A; Des Soye BJ; Ntai I; Kelleher NL; Jewett MC
    Biotechnol J; 2022 Sep; 17(9):e2200096. PubMed ID: 35569121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System.
    Worst EG; Exner MP; De Simone A; Schenkelberger M; Noireaux V; Budisa N; Ott A
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27500416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
    Kobayashi T; Yanagisawa T; Sakamoto K; Yokoyama S
    J Mol Biol; 2009 Feb; 385(5):1352-60. PubMed ID: 19100747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression.
    Levine MZ; So B; Mullin AC; Fanter R; Dillard K; Watts KR; La Frano MR; Oza JP
    ACS Synth Biol; 2020 Oct; 9(10):2765-2774. PubMed ID: 32835484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion.
    Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T
    ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo.
    Katayama H; Nozawa K; Nureki O; Nakahara Y; Hojo H
    Biosci Biotechnol Biochem; 2012; 76(1):205-8. PubMed ID: 22232266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple site-specific installations of Nε-monomethyl-L-lysine into histone proteins by cell-based and cell-free protein synthesis.
    Yanagisawa T; Takahashi M; Mukai T; Sato S; Wakamori M; Shirouzu M; Sakamoto K; Umehara T; Yokoyama S
    Chembiochem; 2014 Aug; 15(12):1830-8. PubMed ID: 25067793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolving the N-Terminal Domain of Pyrrolysyl-tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids.
    Sharma V; Zeng Y; Wang WW; Qiao Y; Kurra Y; Liu WR
    Chembiochem; 2018 Jan; 19(1):26-30. PubMed ID: 29096043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetically encoded photocaged Nepsilon-methyl-L-lysine.
    Wang YS; Wu B; Wang Z; Huang Y; Wan W; Russell WK; Pai PJ; Moe YN; Russell DH; Liu WR
    Mol Biosyst; 2010 Sep; 6(9):1557-60. PubMed ID: 20711534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-Specific Chemoselective Pyrrolysine Analogues Incorporation Using the Cell-Free Protein Synthesis System.
    Gerrits M; Budisa N; Merk H
    ACS Synth Biol; 2019 Feb; 8(2):381-390. PubMed ID: 30589532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic encoding of the post-translational modification 2-hydroxyisobutyryl-lysine.
    Knight WA; Cropp TA
    Org Biomol Chem; 2015 Jun; 13(23):6479-81. PubMed ID: 25999185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.
    Polycarpo CR; Herring S; Bérubé A; Wood JL; Söll D; Ambrogelly A
    FEBS Lett; 2006 Dec; 580(28-29):6695-700. PubMed ID: 17126325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-site labeling of proteins with unnatural amino acids.
    Loscha KV; Herlt AJ; Qi R; Huber T; Ozawa K; Otting G
    Angew Chem Int Ed Engl; 2012 Feb; 51(9):2243-6. PubMed ID: 22298420
    [No Abstract]   [Full Text] [Related]  

  • 20. Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli.
    Mukai T; Yamaguchi A; Ohtake K; Takahashi M; Hayashi A; Iraha F; Kira S; Yanagisawa T; Yokoyama S; Hoshi H; Kobayashi T; Sakamoto K
    Nucleic Acids Res; 2015 Sep; 43(16):8111-22. PubMed ID: 26240376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.