These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3397007)

  • 1. Utilization of cystine by dermatophytes on glucose-peptone media.
    Kunert J
    Folia Microbiol (Praha); 1988; 33(3):188-97. PubMed ID: 3397007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of cystine by dermatophytes on a gelatin medium.
    Kunert J
    Folia Microbiol (Praha); 1988; 33(2):121-8. PubMed ID: 3371802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of various concentrations of free cystine by the fungus Microsporum gypseum.
    Kunert J
    J Basic Microbiol; 1987; 27(4):207-13. PubMed ID: 3430337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of L-cystine as a source of carbon and nitrogen by various fungi.
    Kunert J
    Acta Univ Palacki Olomuc Fac Med; 1989; 123():351-64. PubMed ID: 2533843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of sulfur-containing amino acids in the dermatophyte Microsporum gypseum. I. Neutral amino acids.
    Kunert J
    J Basic Microbiol; 1985; 25(1):29-37. PubMed ID: 3998995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of sulphate, sulphite and S-sulphocysteine by the fungus Microsporum gypseum during growth on cystine.
    Kunert J
    Folia Microbiol (Praha); 1975; 20(2):142-51. PubMed ID: 1176037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of sulfur-containing amino acids in the dermatophyte Microsporum gypseum. II. Acidic amino acid derivatives.
    Kunert J
    J Basic Microbiol; 1985; 25(2):111-8. PubMed ID: 3925121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystine catabolism in mycelia of Microsporum gypseum, a dermatophytic fungus.
    Kunert J; TrĂ¼per HG
    Arch Microbiol; 1986 Jul; 145(2):181-6. PubMed ID: 3767570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replacing dietary methionine and cystine in chick diets with sulfate or other sulfur compounds.
    Anderson JO; Warnick RE; Dalai RK
    Poult Sci; 1975 Jul; 54(4):1122-8. PubMed ID: 1161701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of sulfite by a sulfate-using revertant of Salmonella pullorum.
    Kline BC; Schoenhard DE
    J Bacteriol; 1969 Oct; 100(1):365-9. PubMed ID: 5344100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Keratin degradation by dermatophytes relies on cysteine dioxygenase and a sulfite efflux pump.
    Grumbt M; Monod M; Yamada T; Hertweck C; Kunert J; Staib P
    J Invest Dermatol; 2013 Jun; 133(6):1550-5. PubMed ID: 23353986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Auxotrophy and utilization of oxidized and reduced mineral sulfur forms by Brevundimonas diminuta strains].
    Smirnov VV; Kiprianova EA; Babich LV
    Mikrobiol Z; 2001; 63(5):27-33. PubMed ID: 11785417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable isotope fractionation by Clostridium pasteurianum. 1. 34S/32S: inverse isotope effects during SO4-2- and SO3-2- reduction.
    McCready RG; Laishley EJ; Krouse HR
    Can J Microbiol; 1975 Mar; 21(3):235-44. PubMed ID: 234781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.
    Kurmanbayeva A; Brychkova G; Bekturova A; Khozin I; Standing D; Yarmolinsky D; Sagi M
    Methods Mol Biol; 2017; 1631():253-271. PubMed ID: 28735402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the sulfite reduction test for clostridia.
    Kawabata N
    Microbiol Immunol; 1980; 24(4):271-9. PubMed ID: 6993870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of L- and DL-cystine by the fungus Microsporum gypseum.
    Kunert J
    Folia Microbiol (Praha); 1982; 27(6):390-4. PubMed ID: 7173742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov.
    Sass H; Cypionka H
    Syst Appl Microbiol; 2004 Sep; 27(5):541-8. PubMed ID: 15490555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of sulfur compounds by Streptococcus bovis.
    PRESCOTT JM
    J Bacteriol; 1961 Nov; 82(5):724-8. PubMed ID: 14488628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Description of Desulfotomaculum nigrificans subsp. salinus as a new species, Desulfotomaculum salinum sp. nov].
    Nazina TN; Rozanova EP; Beliakova EV; Lysenko AM; Poltaraus AB; Turova TP; Osipov GA; Beliaev SS
    Mikrobiologiia; 2005; 74(5):654-62. PubMed ID: 16315984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.