These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33970141)

  • 1. Assessing Protein Interactions in Live-Cells with FRET-Sensitized Emission.
    Vámosi G; Miller S; Sinha M; Fernandez MK; Mocsár G; Renz M
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33970141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
    Lin F; Zhang C; Du M; Wang L; Mai Z; Chen T
    J Microsc; 2018 Nov; 272(2):145-150. PubMed ID: 30338530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative protocol for intensity-based live cell FRET imaging.
    Kaminski CF; Rees EJ; Schierle GS
    Methods Mol Biol; 2014; 1076():445-54. PubMed ID: 24108638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging protein interactions by FRET microscopy: FRET measurements by sensitized emission.
    Verveer PJ; Rocks O; Harpur AG; Bastiaens PI
    CSH Protoc; 2006 Nov; 2006(6):. PubMed ID: 22485984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Protein Interactions in the Cytoplasm and Periplasm of
    Meiresonne NY; Alexeeva S; van der Ploeg R; den Blaauwen T
    Bio Protoc; 2018 Jan; 8(2):e2697. PubMed ID: 34179246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y; Mills JD; Periasamy A
    Differentiation; 2003 Dec; 71(9-10):528-41. PubMed ID: 14686950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
    Bene L; Gralle M; Damjanovich L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing.
    Gu Y; Di WL; Kelsell DP; Zicha D
    J Microsc; 2004 Aug; 215(Pt 2):162-73. PubMed ID: 15315503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor.
    Laskaratou D; Fernández GS; Coucke Q; Fron E; Rocha S; Hofkens J; Hendrix J; Mizuno H
    Nat Commun; 2021 May; 12(1):2541. PubMed ID: 33953187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Screening of Protein-Protein Interactions Using Förster Resonance Energy Transfer (FRET-) Based Fluorescence Plate Reader Assay in Live Cells.
    Durhan ST; Sezer EN; Son CD; Baloglu FK
    Appl Spectrosc; 2023 Mar; 77(3):292-302. PubMed ID: 36345563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement.
    Wang S; Li KJ; Lin XW; Jiang CZ; Chen DH; Wu Q; Hua ZC
    J Microsc; 2012 Oct; 248(1):58-65. PubMed ID: 22971218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.
    Müller SM; Galliardt H; Schneider J; Barisas BG; Seidel T
    Front Plant Sci; 2013 Oct; 4():413. PubMed ID: 24194740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells.
    Zhang J; Zhang L; Chai L; Yang F; Du M; Chen T
    Micron; 2016 Sep; 88():7-15. PubMed ID: 27239984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Protein-Protein Interactions by Förster Resonance Energy Transfer (FRET) Microscopy in Live Cells.
    Manzella-Lapeira J; Brzostowski JA
    Curr Protoc Protein Sci; 2018 Aug; 93(1):e58. PubMed ID: 29984911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging protein interactions by FRET microscopy: FRET measurements by acceptor photobleaching.
    Verveer PJ; Rocks O; Harpur AG; Bastiaens PI
    CSH Protoc; 2006 Nov; 2006(6):. PubMed ID: 22485985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
    Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved estimation of the ratio of detection efficiencies of excited acceptors and donors for FRET measurements.
    Batta Á; Hajdu T; Nagy P
    Cytometry A; 2023 Jul; 103(7):563-574. PubMed ID: 36866503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.