BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33970608)

  • 1. Encounters between Cas9/dCas9 and G-Quadruplexes: Implications for Transcription Regulation and Cas9-Mediated DNA Cleavage.
    Hoque ME; Mustafa G; Basu S; Balci H
    ACS Synth Biol; 2021 May; 10(5):972-978. PubMed ID: 33970608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting G-quadruplex Forming Sequences with Cas9.
    Balci H; Globyte V; Joo C
    ACS Chem Biol; 2021 Apr; 16(4):596-603. PubMed ID: 33769784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference.
    Kim B; Kim HJ; Lee SJ
    J Microbiol Biotechnol; 2020 Dec; 30(12):1919-1926. PubMed ID: 32958732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-Quadruplex-Enabling Sequence within the Human Tyrosine Hydroxylase Promoter Differentially Regulates Transcription.
    Farhath MM; Thompson M; Ray S; Sewell A; Balci H; Basu S
    Biochemistry; 2015 Sep; 54(36):5533-45. PubMed ID: 26284527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stalling of Transcription by Putative G-quadruplex Sequences and CRISPR-dCas9.
    Hoque ME; Kabir ML; Shiekh S; Balci H; Basu S
    bioRxiv; 2024 Mar; ():. PubMed ID: 38559215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation.
    Cai R; Lv R; Shi X; Yang G; Jin J
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An engineered ScCas9 with broad PAM range and high specificity and activity.
    Chatterjee P; Jakimo N; Lee J; Amrani N; Rodríguez T; Koseki SRT; Tysinger E; Qing R; Hao S; Sontheimer EJ; Jacobson J
    Nat Biotechnol; 2020 Oct; 38(10):1154-1158. PubMed ID: 32393822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway.
    Xu S; Kim J; Tang Q; Chen Q; Liu J; Xu Y; Fu X
    Protein Cell; 2020 May; 11(5):352-365. PubMed ID: 32170574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FokI-dCas9 mediates high-fidelity genome editing in pigs.
    Fisicaro N; Salvaris EJ; Philip GK; Wakefield MJ; Nottle MB; Hawthorne WJ; Cowan PJ
    Xenotransplantation; 2020 Jan; 27(1):e12551. PubMed ID: 31407391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
    Palermo G; Ricci CG; Fernando A; Basak R; Jinek M; Rivalta I; Batista VS; McCammon JA
    J Am Chem Soc; 2017 Nov; 139(45):16028-16031. PubMed ID: 28764328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
    Sternberg SH; Redding S; Jinek M; Greene EC; Doudna JA
    Nature; 2014 Mar; 507(7490):62-7. PubMed ID: 24476820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.