These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33970642)

  • 1. Recent Advances for Improving the Accuracy, Transferability, and Efficiency of Reactive Force Fields.
    Leven I; Hao H; Tan S; Guan X; Penrod KA; Akbarian D; Evangelisti B; Hossain MJ; Islam MM; Koski JP; Moore S; Aktulga HM; van Duin ACT; Head-Gordon T
    J Chem Theory Comput; 2021 Jun; 17(6):3237-3251. PubMed ID: 33970642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ReaxFF/AMBER-A Framework for Hybrid Reactive/Nonreactive Force Field Molecular Dynamics Simulations.
    Rahnamoun A; Kaymak MC; Manathunga M; Götz AW; van Duin ACT; Merz KM; Aktulga HM
    J Chem Theory Comput; 2020 Dec; 16(12):7645-7654. PubMed ID: 33141581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.
    Zheng M; Li X; Guo L
    J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. eReaxFF: A Pseudoclassical Treatment of Explicit Electrons within Reactive Force Field Simulations.
    Islam MM; Kolesov G; Verstraelen T; Kaxiras E; van Duin AC
    J Chem Theory Comput; 2016 Aug; 12(8):3463-72. PubMed ID: 27399177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Computational Design of ZIFs Using ReaxFF.
    Yang Y; Shin YK; Li S; Bennett TD; van Duin ACT; Mauro JC
    J Phys Chem B; 2018 Oct; 122(41):9616-9624. PubMed ID: 30265536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibbs Ensemble Monte Carlo for Reactive Force Fields to Determine the Vapor-Liquid Equilibrium of CO
    Heijmans K; Tranca IC; Smeulders DMJ; Vlugt TJH; Gaastra-Nedea SV
    J Chem Theory Comput; 2021 Jan; 17(1):322-329. PubMed ID: 33350819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming the Accuracy and Numerical Stability of ReaxFF Reactive Force Fields.
    Furman D; Wales DJ
    J Phys Chem Lett; 2019 Nov; 10(22):7215-7223. PubMed ID: 31682448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Reactive Force Field with Coarse-Grained Electrons for Liquid Water.
    Leven I; Hao H; Das AK; Head-Gordon T
    J Phys Chem Lett; 2020 Nov; 11(21):9240-9247. PubMed ID: 33073998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions.
    Trnka T; Tvaroška I; Koča J
    J Chem Theory Comput; 2018 Jan; 14(1):291-302. PubMed ID: 29156140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide.
    Jaramillo-Botero A; Naserifar S; Goddard WA
    J Chem Theory Comput; 2014 Apr; 10(4):1426-39. PubMed ID: 26580361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial extended-Lagrangian scheme for solving charge equilibration models.
    Leven I; Head-Gordon T
    Phys Chem Chem Phys; 2019 Aug; 21(34):18652-18659. PubMed ID: 31460521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics.
    Ashraf C; van Duin AC
    J Phys Chem A; 2017 Feb; 121(5):1051-1068. PubMed ID: 28072539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A well-behaved theoretical framework for ReaxFF reactive force fields.
    Furman D; Wales DJ
    J Chem Phys; 2020 Jul; 153(2):021102. PubMed ID: 32668915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals.
    Huang HS; Ai LQ; van Duin ACT; Chen M; Lü YJ
    J Chem Phys; 2019 Sep; 151(9):094503. PubMed ID: 31492056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valence energy correction for electron reactive force field.
    Bertolini S; Jacob T
    J Comput Chem; 2022 May; 43(12):870-878. PubMed ID: 35319099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic Constrained Extended System Dynamics for Solving Charge Equilibration Models.
    Tan S; Leven I; An D; Lin L; Head-Gordon T
    J Chem Theory Comput; 2020 Oct; 16(10):5991-5998. PubMed ID: 32956587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Charge-Implicit ReaxFF for C/H/O Systems.
    Kański M; Hrabar S; van Duin ACT; Postawa Z
    J Phys Chem Lett; 2022 Jan; 13(2):628-633. PubMed ID: 35019649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water in an External Electric Field: Comparing Charge Distribution Methods Using ReaxFF Simulations.
    Koski JP; Moore SG; Clay RC; O'Hearn KA; Aktulga HM; Wilson MA; Rackers JA; Lane JMD; Modine NA
    J Chem Theory Comput; 2022 Jan; 18(1):580-594. PubMed ID: 34914383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.
    Cheng T; Jaramillo-Botero A; Goddard WA; Sun H
    J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A test on reactive force fields for the study of silica dimerization reactions.
    Moqadam M; Riccardi E; Trinh TT; Åstrand PO; van Erp TS
    J Chem Phys; 2015 Nov; 143(18):184113. PubMed ID: 26567652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.