These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 33970918)
1. Interannual variability in net ecosystem carbon production in a rain-fed maize ecosystem and its climatic and biotic controls during 2005-2018. Zhang H; Zhao T; Lyu S; Wu H; Yang Y; Wen X PLoS One; 2021; 16(5):e0237684. PubMed ID: 33970918 [TBL] [Abstract][Full Text] [Related]
2. Interannual variation in grassland net ecosystem productivity and its coupling relation to climatic factors in China. Zhou W; Huang L; Yang H; Ju W; Yue T Environ Geochem Health; 2019 Jun; 41(3):1583-1597. PubMed ID: 30623271 [TBL] [Abstract][Full Text] [Related]
3. Interannual variation in carbon sequestration depends mainly on the carbon uptake period in two croplands on the North China Plain. Bao X; Wen X; Sun X; Zhao F; Wang Y PLoS One; 2014; 9(10):e110021. PubMed ID: 25313713 [TBL] [Abstract][Full Text] [Related]
4. Re-assessment of the climatic controls on the carbon and water fluxes of a boreal aspen forest over 1996-2016: Changing sensitivity to long-term climatic conditions. Liu P; Barr AG; Zha T; Black TA; Jassal RS; Nesic Z; Helgason WD; Jia X; Tian Y Glob Chang Biol; 2022 Aug; 28(15):4605-4619. PubMed ID: 35474386 [TBL] [Abstract][Full Text] [Related]
5. Dry-season length affects the annual ecosystem carbon balance of a temperate semi-arid shrubland. Mu Y; Jia X; Ye Z; Zha T; Guo X; Black TA; Zhang Y; Hao S; Han C; Gao S; Qin S; Liu P; Tian Y Sci Total Environ; 2024 Mar; 917():170532. PubMed ID: 38296104 [TBL] [Abstract][Full Text] [Related]
6. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928 [TBL] [Abstract][Full Text] [Related]
7. Seasonal variability of forest sensitivity to heat and drought stresses: A synthesis based on carbon fluxes from North American forest ecosystems. Xu B; Arain MA; Black TA; Law BE; Pastorello GZ; Chu H Glob Chang Biol; 2020 Feb; 26(2):901-918. PubMed ID: 31529736 [TBL] [Abstract][Full Text] [Related]
8. Contrasting ecosystem CO Lu W; Xiao J; Liu F; Zhang Y; Liu C; Lin G Glob Chang Biol; 2017 Mar; 23(3):1180-1198. PubMed ID: 27400026 [TBL] [Abstract][Full Text] [Related]
9. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. He B; Chen C; Lin S; Yuan W; Chen HW; Chen D; Zhang Y; Guo L; Zhao X; Liu X; Piao S; Zhong Z; Wang R; Tang R Natl Sci Rev; 2022 Apr; 9(4):nwab150. PubMed ID: 35386922 [TBL] [Abstract][Full Text] [Related]
10. Variations in seasonal and inter-annual carbon fluxes in a semi-arid sandy maize cropland ecosystem in China's Horqin Sandy Land. Niu Y; Li Y; Wang M; Wang X; Chen Y; Duan Y Environ Sci Pollut Res Int; 2022 Jan; 29(4):5295-5312. PubMed ID: 34420164 [TBL] [Abstract][Full Text] [Related]
11. Does growing atmospheric CO Launiainen S; Katul GG; Leppä K; Kolari P; Aslan T; Grönholm T; Korhonen L; Mammarella I; Vesala T Glob Chang Biol; 2022 May; 28(9):2910-2929. PubMed ID: 35112446 [TBL] [Abstract][Full Text] [Related]
12. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Biederman JA; Scott RL; Goulden ML; Vargas R; Litvak ME; Kolb TE; Yepez EA; Oechel WC; Blanken PD; Bell TW; Garatuza-Payan J; Maurer GE; Dore S; Burns SP Glob Chang Biol; 2016 May; 22(5):1867-79. PubMed ID: 26780862 [TBL] [Abstract][Full Text] [Related]
14. Water and carbon dioxide fluxes over an alpine meadow in southwest China and the impact of a spring drought event. Wang L; Liu H; Sun J; Feng J Int J Biometeorol; 2016 Feb; 60(2):195-205. PubMed ID: 26059924 [TBL] [Abstract][Full Text] [Related]
15. Divergent long-term trends and interannual variation in ecosystem resource use efficiencies of a southern boreal old black spruce forest 1999-2017. Liu P; Black TA; Jassal RS; Zha T; Nesic Z; Barr AG; Helgason WD; Jia X; Tian Y; Stephens JJ; Ma J Glob Chang Biol; 2019 Sep; 25(9):3056-3069. PubMed ID: 31055880 [TBL] [Abstract][Full Text] [Related]
16. Interannual and Seasonal Drivers of Carbon Cycle Variability Represented by the Community Earth System Model (CESM2). Wieder WR; Butterfield Z; Lindsay K; Lombardozzi DL; Keppel-Aleks G Global Biogeochem Cycles; 2021 Sep; 35(9):e2021GB007034. PubMed ID: 35860341 [TBL] [Abstract][Full Text] [Related]
17. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Fu Z; Stoy PC; Poulter B; Gerken T; Zhang Z; Wakbulcho G; Niu S Glob Chang Biol; 2019 Oct; 25(10):3381-3394. PubMed ID: 31197940 [TBL] [Abstract][Full Text] [Related]
18. [Simulation of carbon cycle in Qianyanzhou artificial masson pine forest ecosystem and sensitivity analysis of model parameters]. Wang Y; Zhang N; Yu GR Ying Yong Sheng Tai Xue Bao; 2010 Jul; 21(7):1656-66. PubMed ID: 20879520 [TBL] [Abstract][Full Text] [Related]
19. [Carbon dynamics of broad-leaved Korean pine forest ecosystem in Changbai Mountains and its responses to climate change]. Tang FD; Han SJ; Zhang JH Ying Yong Sheng Tai Xue Bao; 2009 Jun; 20(6):1285-92. PubMed ID: 19795634 [TBL] [Abstract][Full Text] [Related]
20. Partitioning interannual variability in net ecosystem exchange between climatic variability and functional change. Hui D; Luo Y; Katul G Tree Physiol; 2003 May; 23(7):433-42. PubMed ID: 12670797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]