BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33971140)

  • 1. Controllable multi-phase protein release from in-situ hydrolyzable hydrogel.
    Lau CML; Jahanmir G; Yu Y; Chau Y
    J Control Release; 2021 Jul; 335():75-85. PubMed ID: 33971140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels.
    Hiemstra C; Zhong Z; van Steenbergen MJ; Hennink WE; Feijen J
    J Control Release; 2007 Sep; 122(1):71-8. PubMed ID: 17658651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior.
    de Jong SJ; van Eerdenbrugh B; van Nostrum CF; Kettenes-van den Bosch JJ; Hennink WE
    J Control Release; 2001 Apr; 71(3):261-75. PubMed ID: 11295219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates.
    Buwalda SJ; Bethry A; Hunger S; Kandoussi S; Coudane J; Nottelet B
    Eur J Pharm Biopharm; 2019 Jun; 139():232-239. PubMed ID: 30954658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local environment-dependent kinetics of ester hydrolysis revealed by direct
    Lau CML; Jahanmir G; Chau Y
    Acta Biomater; 2020 Jan; 101():219-226. PubMed ID: 31669542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyanions effectively prevent protein conjugation and activity loss during hydrogel cross-linking.
    Gregoritza M; Goepferich AM; Brandl FP
    J Control Release; 2016 Sep; 238():92-102. PubMed ID: 27448442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photolabile Linkers: Exploiting Labile Bond Chemistry to Control Mode and Rate of Hydrogel Degradation and Protein Release.
    LeValley PJ; Neelarapu R; Sutherland BP; Dasgupta S; Kloxin CJ; Kloxin AM
    J Am Chem Soc; 2020 Mar; 142(10):4671-4679. PubMed ID: 32037819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-structured smart hydrogels with enhanced protein loading and release efficiency.
    Zhang JT; Petersen S; Thunga M; Leipold E; Weidisch R; Liu X; Fahr A; Jandt KD
    Acta Biomater; 2010 Apr; 6(4):1297-306. PubMed ID: 19913647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronic Acid-PEG-Based Diels-Alder
    Ilochonwu BC; Mihajlovic M; Maas-Bakker RF; Rousou C; Tang M; Chen M; Hennink WE; Vermonden T
    Biomacromolecules; 2022 Jul; 23(7):2914-2929. PubMed ID: 35735135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailor-made polymers for local drug delivery: release of macromolecular model drugs from biodegradable hydrogels based on poly(ethylene oxide).
    Kelner A; Schacht EH
    J Control Release; 2005 Jan; 101(1-3):13-20. PubMed ID: 15588890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperbranched phosphoramidate-hyaluronan hybrid: a reduction-sensitive injectable hydrogel for controlled protein release.
    Liu Y; Zhang F; Ru Y
    Carbohydr Polym; 2015 Mar; 117():304-311. PubMed ID: 25498639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ antibody-loaded hydrogel for intravitreal delivery.
    Awwad S; Abubakre A; Angkawinitwong U; Khaw PT; Brocchini S
    Eur J Pharm Sci; 2019 Sep; 137():104993. PubMed ID: 31302214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained release of proteins from high water content supramolecular polymer hydrogels.
    Appel EA; Loh XJ; Jones ST; Dreiss CA; Scherman OA
    Biomaterials; 2012 Jun; 33(18):4646-52. PubMed ID: 22459194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release.
    Bhattarai N; Ramay HR; Gunn J; Matsen FA; Zhang M
    J Control Release; 2005 Apr; 103(3):609-24. PubMed ID: 15820408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tunable hydrogel for encapsulation and controlled release of bioactive proteins.
    Delgado M; Spanka C; Kerwin LD; Wentworth P; Janda KD
    Biomacromolecules; 2002; 3(2):262-71. PubMed ID: 11888310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin.
    Varnier K; Vieira T; Wolf M; Belfiore LA; Tambourgi EB; Paulino AT
    Int J Biol Macromol; 2018 Dec; 120(Pt A):522-528. PubMed ID: 30165142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules.
    Patil NS; Dordick JS; Rethwisch DG
    Biomaterials; 1996 Dec; 17(24):2343-50. PubMed ID: 8982474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcutaneous Delivery of Albumin: Impact of Thermosensitive Hydrogels.
    Patel N; Ji N; Wang Y; Li X; Langley N; Tan C
    AAPS PharmSciTech; 2021 Mar; 22(3):120. PubMed ID: 33782742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Albumin-conjugated pH/thermo responsive poly(amino urethane) multiblock copolymer as an injectable hydrogel for protein delivery.
    Manokruang K; Lee DS
    Macromol Biosci; 2013 Sep; 13(9):1195-203. PubMed ID: 23893912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.