BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33971514)

  • 1. Sustainable treatment of bimetallic (Ag-Pd/α-Al
    Choi S; Ilyas S; Hwang G; Kim H
    J Environ Manage; 2021 Aug; 291():112748. PubMed ID: 33971514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2015 Jul; 41():134-41. PubMed ID: 25802060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation and recycling of Au and Ag from waste light-emitting diodes.
    Zhang A; Li S; Zhuang X; Song X; Gu W; Bai J; Wang J
    Environ Technol; 2024 Jun; 45(15):3004-3015. PubMed ID: 37043296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O
    Ilyas S; Srivastava RR; Kim H
    J Hazard Mater; 2021 Aug; 416():125769. PubMed ID: 33857808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of palladium and silver from waste multilayer ceramic capacitors by eutectic capture process of copper and mechanism analysis.
    Liu Y; Zhang L; Song Q; Xu Z
    J Hazard Mater; 2020 Apr; 388():122008. PubMed ID: 31951988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrometallurgical recycling of surface-coated metals from automobile-discarded ABS plastic waste.
    Kim TG; Srivastava RR; Jun M; Kim MS; Lee JC
    Waste Manag; 2018 Oct; 80():414-422. PubMed ID: 30455024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated and sustainable hydrometallurgical process for enrichment of precious metals and selective separation of copper, zinc, and lead from a roasted sand.
    Liu G; Pan D; Wu Y; Yuan H; Yu L; Wang W
    Waste Manag; 2021 Aug; 132():133-141. PubMed ID: 34332369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching efficiency and kinetics of the recovery of palladium and rhodium from a spent auto-catalyst in HCl/CuCl
    Nogueira CA; Paiva AP; Costa MC; Rosa da Costa AM
    Environ Technol; 2020 Jul; 41(18):2293-2304. PubMed ID: 30605363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of precious metals positioning in waste printed circuit boards and the economic benefits of recycling.
    Huang T; Zhu J; Huang X; Ruan J; Xu Z
    Waste Manag; 2022 Feb; 139():105-115. PubMed ID: 34959086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation.
    Behnamfard A; Salarirad MM; Veglio F
    Waste Manag; 2013 Nov; 33(11):2354-63. PubMed ID: 23927928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological recycling of hazardous waste PCBs using Sulfobacillus thermosulfidooxidans through pretreatment of toxicant metals: Process optimization and kinetic studies.
    Ilyas S; Srivastava RR; Kim H; Ilyas N
    Chemosphere; 2022 Jan; 286(Pt 3):131978. PubMed ID: 34426287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An innovative hybrid hydrometallurgical approach for precious metals recovery from secondary resources.
    Birloaga I; Vegliò F
    J Environ Manage; 2022 Apr; 307():114567. PubMed ID: 35091239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of copper and silver from industrial e-waste leached solutions using sustainable liquid membrane technology: a review.
    Kahar INS; Othman N; Noah NFM; Suliman SS
    Environ Sci Pollut Res Int; 2023 May; 30(25):66445-66472. PubMed ID: 37101217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of high purity precious metals from printed circuit boards.
    Park YJ; Fray DJ
    J Hazard Mater; 2009 May; 164(2-3):1152-8. PubMed ID: 18980802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of metals from Ni-Cu-Ag-Pd-Bi-Sn multi-metal system of e-waste by leaching and stepwise potential-controlled electrodeposition.
    Liu Y; Song Q; Zhang L; Xu Z
    J Hazard Mater; 2021 Apr; 408():124772. PubMed ID: 33388630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.
    Reddy BR; Raju B; Lee JY; Park HK
    J Hazard Mater; 2010 Aug; 180(1-3):253-8. PubMed ID: 20435411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.