These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33971522)

  • 1. The thiol-based reduction of Bi(V) and Sb(V) anti-leishmanial complexes.
    Duffin RN; Stephens LJ; Blair VL; Kedzierski L; Andrews PC
    J Inorg Biochem; 2021 Aug; 221():111470. PubMed ID: 33971522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione.
    Ferreira Cdos S; Martins PS; Demicheli C; Brochu C; Ouellette M; Frézard F
    Biometals; 2003 Sep; 16(3):441-6. PubMed ID: 12680707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione.
    Yan S; Li F; Ding K; Sun H
    J Biol Inorg Chem; 2003 Jul; 8(6):689-97. PubMed ID: 12827457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative stability, toxicity and anti-leishmanial activity of triphenyl antimony(v) and bismuth(v) α-hydroxy carboxylato complexes.
    Duffin RN; Blair VL; Kedzierski L; Andrews PC
    Dalton Trans; 2018 Jan; 47(3):971-980. PubMed ID: 29260831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative stability, cytotoxicity and anti-leishmanial activity of analogous organometallic Sb(V) and Bi(V) acetato complexes: Sb confirms potential while Bi fails the test.
    Duffin RN; Blair VL; Kedzierski L; Andrews PC
    J Inorg Biochem; 2018 Dec; 189():151-162. PubMed ID: 30267965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid reduction of pentavalent antimony by trypanothione: potential relevance to antimonial activation.
    Yan S; Wong IL; Chow LM; Sun H
    Chem Commun (Camb); 2003 Jan; (2):266-7. PubMed ID: 12585423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of new combination anti-leishmanial complexes: Triphenyl Sb(V) mono-hydroxy mono-quinolinolates.
    Duffin RN; Blair VL; Kedzierski L; Andrews PC
    J Inorg Biochem; 2021 Jun; 219():111385. PubMed ID: 33894637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate.
    Frézard F; Demicheli C; Ferreira CS; Costa MA
    Antimicrob Agents Chemother; 2001 Mar; 45(3):913-6. PubMed ID: 11181379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis.
    Goyeneche-Patino DA; Valderrama L; Walker J; Saravia NG
    Antimicrob Agents Chemother; 2008 Dec; 52(12):4503-6. PubMed ID: 18824610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs.
    Ge R; Sun H
    Acc Chem Res; 2007 Apr; 40(4):267-74. PubMed ID: 17330963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and toxicity of tris-tolyl bismuth(V) dicarboxylates and their biological activity towards Leishmania major.
    Ong YC; Blair VL; Kedzierski L; Tuck KL; Andrews PC
    Dalton Trans; 2015 Nov; 44(41):18215-26. PubMed ID: 26425978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved antileishmanial activity of Dppz through complexation with antimony(III) and bismuth(III): investigation of the role of the metal.
    Lizarazo-Jaimes EH; Monte-Neto RL; Reis PG; Fernandes NG; Speziali NL; Melo MN; Frézard F; Demicheli C
    Molecules; 2012 Oct; 17(11):12622-35. PubMed ID: 23099618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite.
    Gomes ML; DeFreitas-Silva G; dos Reis PG; Melo MN; Frézard F; Demicheli C; Idemori YM
    J Biol Inorg Chem; 2015 Jul; 20(5):771-9. PubMed ID: 25929728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism.
    Krauth-Siegel RL; Comini MA
    Biochim Biophys Acta; 2008 Nov; 1780(11):1236-48. PubMed ID: 18395526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-leishmanial activity of heteroleptic organometallic Sb(v) compounds.
    Ali MI; Rauf MK; Badshah A; Kumar I; Forsyth CM; Junk PC; Kedzierski L; Andrews PC
    Dalton Trans; 2013 Dec; 42(48):16733-41. PubMed ID: 24077559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol metabolism of the trypanosomatids as potential drug targets.
    Steenkamp DJ
    IUBMB Life; 2002; 53(4-5):243-8. PubMed ID: 12121003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes.
    Ebersoll S; Bogacz M; Günter LM; Dick TP; Krauth-Siegel RL
    Elife; 2020 Jan; 9():. PubMed ID: 32003744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania.
    Mukhopadhyay R; Dey S; Xu N; Gage D; Lightbody J; Ouellette M; Rosen BP
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10383-7. PubMed ID: 8816809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic and biological characterisation of novel
    Medeiros A; Benítez D; Korn RS; Ferreira VC; Barrera E; Carrión F; Pritsch O; Pantano S; Kunick C; de Oliveira CI; Orban OCF; Comini MA
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):1345-1358. PubMed ID: 32588679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.