These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 33971912)
1. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors. Yeh IL; Holst-Wolf J; Elangovan N; Cuppone AV; Lakshminarayan K; Cappello L; Masia L; Konczak J J Neuroeng Rehabil; 2021 May; 18(1):77. PubMed ID: 33971912 [TBL] [Abstract][Full Text] [Related]
2. A robot-assisted sensorimotor training program can improve proprioception and motor function in stroke survivors. Elangovan N; Yeh IL; Holst-Wolf J; Konczak J IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():660-664. PubMed ID: 31374706 [TBL] [Abstract][Full Text] [Related]
3. A robot-aided visuomotor wrist training induces motor and proprioceptive learning that transfers to the untrained ipsilateral elbow. Zhu H; Wang Y; Elangovan N; Cappello L; Sandini G; Masia L; Konczak J J Neuroeng Rehabil; 2023 Oct; 20(1):143. PubMed ID: 37875916 [TBL] [Abstract][Full Text] [Related]
4. A robot-aided visuomotor wrist training induces gains in proprioceptive and movement accuracy in the contralateral wrist. Wang Y; Zhu H; Elangovan N; Cappello L; Sandini G; Masia L; Konczak J Sci Rep; 2021 Mar; 11(1):5281. PubMed ID: 33674684 [TBL] [Abstract][Full Text] [Related]
5. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance. Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321 [TBL] [Abstract][Full Text] [Related]
6. A robot-aided visuo-motor training that improves proprioception and spatial accuracy of untrained movement. Elangovan N; Cappello L; Masia L; Aman J; Konczak J Sci Rep; 2017 Dec; 7(1):17054. PubMed ID: 29213051 [TBL] [Abstract][Full Text] [Related]
7. Somatosensory Training Improves Proprioception and Untrained Motor Function in Parkinson's Disease. Elangovan N; Tuite PJ; Konczak J Front Neurol; 2018; 9():1053. PubMed ID: 30619029 [No Abstract] [Full Text] [Related]
8. Effects of an assist-as-needed equipped Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) on upper limb function in patients with chronic stroke. Hsu HY; Koh CL; Yang KC; Lin YC; Hsu CH; Su FC; Kuo LC J Neuroeng Rehabil; 2024 Jan; 21(1):5. PubMed ID: 38173006 [TBL] [Abstract][Full Text] [Related]
9. Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke. Vlaar MP; Solis-Escalante T; Dewald JPA; van Wegen EEH; Schouten AC; Kwakkel G; van der Helm FCT; J Neuroeng Rehabil; 2017 Apr; 14(1):30. PubMed ID: 28412953 [TBL] [Abstract][Full Text] [Related]
10. Robot-aided assessment and associated brain lesions of impaired ankle proprioception in chronic stroke. Huang Q; Elangovan N; Zhang M; Van de Winckel A; Konczak J J Neuroeng Rehabil; 2024 Jun; 21(1):109. PubMed ID: 38915064 [TBL] [Abstract][Full Text] [Related]
11. Vision does not always help stroke survivors compensate for impaired limb position sense. Herter TM; Scott SH; Dukelow SP J Neuroeng Rehabil; 2019 Oct; 16(1):129. PubMed ID: 31666135 [TBL] [Abstract][Full Text] [Related]
12. The independence of impairments in proprioception and visuomotor adaptation after stroke. Moore RT; Piitz MA; Singh N; Dukelow SP; Cluff T J Neuroeng Rehabil; 2024 May; 21(1):81. PubMed ID: 38762552 [TBL] [Abstract][Full Text] [Related]
13. The Arm Movement Detection (AMD) test: a fast robotic test of proprioceptive acuity in the arm. Mrotek LA; Bengtson M; Stoeckmann T; Botzer L; Ghez CP; McGuire J; Scheidt RA J Neuroeng Rehabil; 2017 Jun; 14(1):64. PubMed ID: 28659156 [TBL] [Abstract][Full Text] [Related]
14. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. Carpinella I; Lencioni T; Bowman T; Bertoni R; Turolla A; Ferrarin M; Jonsdottir J J Neuroeng Rehabil; 2020 Jan; 17(1):10. PubMed ID: 32000790 [TBL] [Abstract][Full Text] [Related]
16. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke. Vahdat S; Darainy M; Thiel A; Ostry DJ Neurorehabil Neural Repair; 2019 Jan; 33(1):70-81. PubMed ID: 30595082 [TBL] [Abstract][Full Text] [Related]
17. Task-Oriented Training by a Personalized Electromyography-Driven Soft Robotic Hand in Chronic Stroke: A Randomized Controlled Trial. Shi XQ; Ti CE; Lu HY; Hu CP; Xie DS; Yuan K; Heung HL; Leung TW; Li Z; Tong RK Neurorehabil Neural Repair; 2024 Aug; 38(8):595-606. PubMed ID: 38812378 [TBL] [Abstract][Full Text] [Related]
18. Relative independence of upper limb position sense and reaching in children with hemiparetic perinatal stroke. Kuczynski AM; Kirton A; Semrau JA; Dukelow SP J Neuroeng Rehabil; 2021 May; 18(1):80. PubMed ID: 33980254 [TBL] [Abstract][Full Text] [Related]
19. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. Keeling AB; Piitz M; Semrau JA; Hill MD; Scott SH; Dukelow SP J Neuroeng Rehabil; 2021 Jan; 18(1):10. PubMed ID: 33478563 [TBL] [Abstract][Full Text] [Related]
20. Proprioceptive Training with Visual Feedback Improves Upper Limb Function in Stroke Patients: A Pilot Study. He J; Li C; Lin J; Shu B; Ye B; Wang J; Lin Y; Jia J Neural Plast; 2022; 2022():1588090. PubMed ID: 35075359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]