These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33972012)

  • 1. Advances in higher-order chromatin architecture: the move towards 4D genome.
    Jung N; Kim TK
    BMB Rep; 2021 May; 54(5):233-245. PubMed ID: 33972012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear compartments, genome folding, and enhancer-promoter communication.
    Ulianov SV; Gavrilov AA; Razin SV
    Int Rev Cell Mol Biol; 2015; 315():183-244. PubMed ID: 25708464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of 3D Interactions Between Promoters and Distal Regulatory Elements with Promoter Capture Hi-C (PCHi-C).
    Karasu N; Sexton T
    Methods Mol Biol; 2021; 2351():229-248. PubMed ID: 34382193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The New Frontier of Functional Genomics: From Chromatin Architecture and Noncoding RNAs to Therapeutic Targets.
    Papanicolaou N; Bonetti A
    SLAS Discov; 2020 Jul; 25(6):568-580. PubMed ID: 32486876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulation in the 3D genome.
    Li Y; Hu M; Shen Y
    Hum Mol Genet; 2018 Aug; 27(R2):R228-R233. PubMed ID: 29767704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing cis-regulatory elements using single-cell epigenomics.
    Preissl S; Gaulton KJ; Ren B
    Nat Rev Genet; 2023 Jan; 24(1):21-43. PubMed ID: 35840754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional genome architecture and emerging technologies: looping in disease.
    Mishra A; Hawkins RD
    Genome Med; 2017 Sep; 9(1):87. PubMed ID: 28964259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range chromatin interactions in pathogenic gene expression control.
    Kong N; Jung I
    Transcription; 2020 Oct; 11(5):211-216. PubMed ID: 33151112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding 3D genome organization by multidisciplinary methods.
    Jerkovic I; Cavalli G
    Nat Rev Mol Cell Biol; 2021 Aug; 22(8):511-528. PubMed ID: 33953379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HiCoP, a simple and robust method for detecting interactions of regulatory regions.
    Zhang Y; Li Z; Bian S; Zhao H; Feng D; Chen Y; Hou Y; Liu Q; Hao B
    Epigenetics Chromatin; 2020 Jul; 13(1):27. PubMed ID: 32611439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin and epigenetic features of long-range gene regulation.
    Harmston N; Lenhard B
    Nucleic Acids Res; 2013 Aug; 41(15):7185-99. PubMed ID: 23766291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-resolution map of the three-dimensional chromatin interactome in human cells.
    Jin F; Li Y; Dixon JR; Selvaraj S; Ye Z; Lee AY; Yen CA; Schmitt AD; Espinoza CA; Ren B
    Nature; 2013 Nov; 503(7475):290-4. PubMed ID: 24141950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.
    Cardozo Gizzi AM; Cattoni DI; Fiche JB; Espinola SM; Gurgo J; Messina O; Houbron C; Ogiyama Y; Papadopoulos GL; Cavalli G; Lagha M; Nollmann M
    Mol Cell; 2019 Apr; 74(1):212-222.e5. PubMed ID: 30795893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization.
    Nikumbh S; Pfeifer N
    BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test.
    Lagler TM; Abnousi A; Hu M; Yang Y; Li Y
    Am J Hum Genet; 2021 Feb; 108(2):257-268. PubMed ID: 33545029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Straightforward protocol for allele-specific chromatin conformation capture.
    Acemel RD; Tena JJ; Gomez-Skarmeta JL; Fibla J; Royo JL
    Gene; 2021 Jan; 767():145185. PubMed ID: 32998049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Guided Protocol for Array Based T2C: A High-Quality Selective High-Resolution High-Throughput Chromosome Interaction Capture.
    Knoch TA
    Curr Protoc Hum Genet; 2018 Oct; 99(1):e55. PubMed ID: 30199150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.