These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33972016)

  • 1. Coronary plaque composition influences biomechanical stress and predicts plaque rupture in a morpho-mechanic OCT analysis.
    Milzi A; Lemma ED; Dettori R; Burgmaier K; Marx N; Reith S; Burgmaier M
    Elife; 2021 May; 10():. PubMed ID: 33972016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between Hemoglobin A1c and the maximal plaque stress of culprit ruptured plaques in patients with ST-segment elevated myocardial infarction.
    Li J; Chen R; Zhou J; Wang Y; Zhao X; Liu C; Zhou P; Chen Y; Song L; Yan S; Yan H; Zhao H
    Int J Cardiol; 2022 Jul; 358():1-7. PubMed ID: 35490785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plaque Rupture in Coronary Atherosclerosis Is Associated With Increased Plaque Structural Stress.
    Costopoulos C; Huang Y; Brown AJ; Calvert PA; Hoole SP; West NEJ; Gillard JH; Teng Z; Bennett MR
    JACC Cardiovasc Imaging; 2017 Dec; 10(12):1472-1483. PubMed ID: 28734911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plaque Ruptures Are Related to High Plaque Stress and Strain Conditions: Direct Verification by Using In Vivo OCT Rupture Data and FSI Models.
    Zhao C; Lv R; Maehara A; Wang L; Gao Z; Xu Y; Guo X; Zhu Y; Huang M; Zhang X; Zhu J; Yu B; Jia H; Mintz GS; Tang D
    Arterioscler Thromb Vasc Biol; 2024 Jul; 44(7):1617-1627. PubMed ID: 38721707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Stress Profiling of Coronary Atherosclerosis: Identifying a Multifactorial Metric to Evaluate Plaque Rupture Risk.
    Doradla P; Otsuka K; Nadkarni A; Villiger M; Karanasos A; Zandvoort LJCV; Dijkstra J; Zijlstra F; Soest GV; Daemen J; Regar E; Bouma BE; Nadkarni SK
    JACC Cardiovasc Imaging; 2020 Mar; 13(3):804-816. PubMed ID: 31005542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphologic Features of Carotid Plaque Rupture Assessed by Optical Coherence Tomography.
    Shindo S; Fujii K; Shirakawa M; Uchida K; Enomoto Y; Iwama T; Kawasaki M; Ando Y; Yoshimura S
    AJNR Am J Neuroradiol; 2015 Nov; 36(11):2140-6. PubMed ID: 26272975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study.
    Tian J; Ren X; Vergallo R; Xing L; Yu H; Jia H; Soeda T; McNulty I; Hu S; Lee H; Yu B; Jang IK
    J Am Coll Cardiol; 2014 Jun; 63(21):2209-16. PubMed ID: 24632266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography.
    Yonetsu T; Kakuta T; Lee T; Takahashi K; Kawaguchi N; Yamamoto G; Koura K; Hishikari K; Iesaka Y; Fujiwara H; Isobe M
    Eur Heart J; 2011 May; 32(10):1251-9. PubMed ID: 21273202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: a 3-vessel optical coherence tomography study.
    Vergallo R; Ren X; Yonetsu T; Kato K; Uemura S; Yu B; Jia H; Abtahian F; Aguirre AD; Tian J; Hu S; Soeda T; Lee H; McNulty I; Park SJ; Jang Y; Prasad A; Lee S; Zhang S; Porto I; Biasucci LM; Crea F; Jang IK
    Am Heart J; 2014 Jan; 167(1):59-67. PubMed ID: 24332143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of fibrous cap thickness and wall shear stress to assess plaque vulnerability in coronary arteries: a pilot study.
    Zahnd G; Schrauwen J; Karanasos A; Regar E; Niessen W; van Walsum T; Gijsen F
    Int J Comput Assist Radiol Surg; 2016 Oct; 11(10):1779-90. PubMed ID: 27236652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies.
    Liang X; Xenos M; Alemu Y; Rambhia SH; Lavi I; Kornowski R; Gruberg L; Fuchs S; Einav S; Bluestein D
    Coron Artery Dis; 2013 Mar; 24(2):75-87. PubMed ID: 23363983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques.
    Narula J; Nakano M; Virmani R; Kolodgie FD; Petersen R; Newcomb R; Malik S; Fuster V; Finn AV
    J Am Coll Cardiol; 2013 Mar; 61(10):1041-51. PubMed ID: 23473409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thrombosis and morphology of plaque rupture using optical coherence tomography.
    Guo J; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS
    Chin Med J (Engl); 2013 Mar; 126(6):1092-5. PubMed ID: 23506584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries.
    Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ
    Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference of ruptured plaque morphology between asymptomatic coronary artery disease and non-ST elevation acute coronary syndrome patients: an optical coherence tomography study.
    Shimamura K; Ino Y; Kubo T; Nishiguchi T; Tanimoto T; Ozaki Y; Satogami K; Orii M; Shiono Y; Komukai K; Yamano T; Matsuo Y; Kitabata H; Yamaguchi T; Hirata K; Tanaka A; Imanishi T; Akasaka T
    Atherosclerosis; 2014 Aug; 235(2):532-7. PubMed ID: 24953494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of fibrous cap stresses on vulnerable plaques leading to heart attacks.
    Hsiao HM; Wu YY; Tsai BC; Chen YC; Cheng YH
    Technol Health Care; 2015; 24 Suppl 1():S155-61. PubMed ID: 26684564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of plaque haemorrhage and its age on structural stresses in atherosclerotic plaques of patients with carotid artery disease: an MR imaging-based finite element simulation study.
    Sadat U; Teng Z; Young VE; Zhu C; Tang TY; Graves MJ; Gillard JH
    Int J Cardiovasc Imaging; 2011 Mar; 27(3):397-402. PubMed ID: 20700655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography.
    Nakazato R; Otake H; Konishi A; Iwasaki M; Koo BK; Fukuya H; Shinke T; Hirata K; Leipsic J; Berman DS; Min JK
    Eur Heart J Cardiovasc Imaging; 2015 Apr; 16(4):373-9. PubMed ID: 25246503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence tomography assessment of the spatial distribution of culprit ruptured plaques and thin-cap fibroatheromas in acute coronary syndrome.
    Toutouzas K; Karanasos A; Riga M; Tsiamis E; Synetos A; Michelongona A; Papanikolaou A; Triantafyllou G; Tsioufis C; Stefanadis C
    EuroIntervention; 2012 Aug; 8(4):477-85. PubMed ID: 22917732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (Biomechanical Evaluation of Atheromatous Coronary Arteries) study.
    Teng Z; Brown AJ; Calvert PA; Parker RA; Obaid DR; Huang Y; Hoole SP; West NE; Gillard JH; Bennett MR
    Circ Cardiovasc Imaging; 2014 May; 7(3):461-70. PubMed ID: 24557858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.