BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 33972395)

  • 1. Erf Affects Commitment and Differentiation of Osteoprogenitor Cells in Cranial Sutures via the Retinoic Acid Pathway.
    Vogiatzi A; Baltsavia I; Dialynas E; Theodorou V; Zhou Y; Deligianni E; Iliopoulos I; Wilkie AOM; Twigg SRF; Mavrothalassitis G
    Mol Cell Biol; 2021 Jul; 41(8):e0014921. PubMed ID: 33972395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients.
    Song D; Zhang F; Reid RR; Ye J; Wei Q; Liao J; Zou Y; Fan J; Ma C; Hu X; Qu X; Chen L; Li L; Yu Y; Yu X; Zhang Z; Zhao C; Zeng Z; Zhang R; Yan S; Wu T; Wu X; Shu Y; Lei J; Li Y; Zhang W; Wang J; Lee MJ; Wolf JM; Huang D; He TC
    J Cell Mol Med; 2017 Nov; 21(11):2782-2795. PubMed ID: 28470873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Erf-Mediated Craniosynostosis and Pharmacological Amelioration.
    Vogiatzi A; Keklikoglou K; Makris K; Argyrou DS; Zacharopoulos A; Sotiropoulou V; Parthenios N; Gkikas A; Kokkori M; Richardson MSW; Fenwick AL; Archontidi S; Arvanitidis C; Robertson J; Parthenios J; Zacharakis G; Twigg SRF; Wilkie AOM; Mavrothalassitis G
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis.
    James AW; Levi B; Xu Y; Carre AL; Longaker MT
    Plast Reconstr Surg; 2010 May; 125(5):1352-1361. PubMed ID: 20134361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis.
    Twigg SR; Vorgia E; McGowan SJ; Peraki I; Fenwick AL; Sharma VP; Allegra M; Zaragkoulias A; Sadighi Akha E; Knight SJ; Lord H; Lester T; Izatt L; Lampe AK; Mohammed SN; Stewart FJ; Verloes A; Wilson LC; Healy C; Sharpe PT; Hammond P; Hughes J; Taylor S; Johnson D; Wall SA; Mavrothalassitis G; Wilkie AO
    Nat Genet; 2013 Mar; 45(3):308-13. PubMed ID: 23354439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation.
    Rice DP; Connor EC; Veltmaat JM; Lana-Elola E; Veistinen L; Tanimoto Y; Bellusci S; Rice R
    Hum Mol Genet; 2010 Sep; 19(17):3457-67. PubMed ID: 20570969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinol-binding protein 4 downregulation during osteogenesis and its localization to non-endocytic vesicles in human cranial suture mesenchymal cells suggest a novel tissue function.
    Leitch VD; Dwivedi PP; Anderson PJ; Powell BC
    Histochem Cell Biol; 2013 Jan; 139(1):75-87. PubMed ID: 22878527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid.
    Laue K; Pogoda HM; Daniel PB; van Haeringen A; Alanay Y; von Ameln S; Rachwalski M; Morgan T; Gray MJ; Breuning MH; Sawyer GM; Sutherland-Smith AJ; Nikkels PG; Kubisch C; Bloch W; Wollnik B; Hammerschmidt M; Robertson SP
    Am J Hum Genet; 2011 Nov; 89(5):595-606. PubMed ID: 22019272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis.
    Ting MC; Wu NL; Roybal PG; Sun J; Liu L; Yen Y; Maxson RE
    Development; 2009 Mar; 136(5):855-64. PubMed ID: 19201948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis).
    De Pollack C; Renier D; Hott M; Marie PJ
    J Bone Miner Res; 1996 Mar; 11(3):401-7. PubMed ID: 8852951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification.
    He F; Soriano P
    Development; 2017 Nov; 144(21):4026-4036. PubMed ID: 28947535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Responsiveness to BMP9 between Patent and Fused Suture Progenitor Cells from Craniosynostosis Patients.
    Song D; Huang S; Zhang L; Liu W; Huang B; Feng Y; Liu B; He TC; Huang D; Reid RR
    Plast Reconstr Surg; 2020 Mar; 145(3):552e-562e. PubMed ID: 32097313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal stem and progenitor cells maintain cranial suture patency and prevent craniosynostosis.
    Menon S; Salhotra A; Shailendra S; Tevlin R; Ransom RC; Januszyk M; Chan CKF; Behr B; Wan DC; Longaker MT; Quarto N
    Nat Commun; 2021 Jul; 12(1):4640. PubMed ID: 34330896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosome biogenesis controls cranial suture MSC fate via the complement pathway in mouse and human iPSC models.
    Jariyasakulroj S; Zhang W; Bai J; Zhang M; Lu Z; Chen JF
    Stem Cell Reports; 2023 Dec; 18(12):2370-2385. PubMed ID: 37977145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLGA-based control release of Noggin blocks the premature fusion of cranial sutures caused by retinoic acid.
    Wang W; Zhou C; Feng Z; Li H; Zhang Y; Bao B; Cai B; Chen M; Huang H
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):291-301. PubMed ID: 30392121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of stiffness-induced signalling mechanisms in cells from patent and fused sutures associated with craniosynostosis.
    Barreto S; González-Vázquez A; R Cameron A; O'Brien FJ; Murray DJ
    Sci Rep; 2017 Sep; 7(1):11494. PubMed ID: 28904366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis.
    Di Pietro L; Barba M; Prampolini C; Ceccariglia S; Frassanito P; Vita A; Guadagni E; Bonvissuto D; Massimi L; Tamburrini G; Parolini O; Lattanzi W
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterozygous mutations in ERF cause syndromic craniosynostosis with multiple suture involvement.
    Chaudhry A; Sabatini P; Han L; Ray PN; Forrest C; Bowdin S
    Am J Med Genet A; 2015 Nov; 167A(11):2544-7. PubMed ID: 26097063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis.
    Janesick A; Abbey R; Chung C; Liu S; Taketani M; Blumberg B
    Development; 2013 Aug; 140(15):3095-106. PubMed ID: 23824578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERF-related craniosynostosis: The phenotypic and developmental profile of a new craniosynostosis syndrome.
    Glass GE; O'Hara J; Canham N; Cilliers D; Dunaway D; Fenwick AL; Jeelani NO; Johnson D; Lester T; Lord H; Morton JEV; Nishikawa H; Noons P; Schwiebert K; Shipster C; Taylor-Beadling A; Twigg SRF; Vasudevan P; Wall SA; Wilkie AOM; Wilson LC
    Am J Med Genet A; 2019 Apr; 179(4):615-627. PubMed ID: 30758909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.