These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 33972509)
1. Cryo-EM structure of SETD2/Set2 methyltransferase bound to a nucleosome containing oncohistone mutations. Liu Y; Zhang Y; Xue H; Cao M; Bai G; Mu Z; Yao Y; Sun S; Fang D; Huang J Cell Discov; 2021 May; 7(1):32. PubMed ID: 33972509 [TBL] [Abstract][Full Text] [Related]
2. Nucleosome and ubiquitin position Set2 to methylate H3K36. Bilokapic S; Halic M Nat Commun; 2019 Aug; 10(1):3795. PubMed ID: 31439846 [TBL] [Abstract][Full Text] [Related]
3. Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. Hacker KE; Fahey CC; Shinsky SA; Chiang YJ; DiFiore JV; Jha DK; Vo AH; Shavit JA; Davis IJ; Strahl BD; Rathmell WK J Biol Chem; 2016 Sep; 291(40):21283-21295. PubMed ID: 27528607 [TBL] [Abstract][Full Text] [Related]
4. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Carvalho S; Raposo AC; Martins FB; Grosso AR; Sridhara SC; Rino J; Carmo-Fonseca M; de Almeida SF Nucleic Acids Res; 2013 Mar; 41(5):2881-93. PubMed ID: 23325844 [TBL] [Abstract][Full Text] [Related]
5. The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation. Sinha J; Nickels JF; Thurm AR; Ludwig CH; Archibald BN; Hinks MM; Wan J; Fang D; Bintu L Mol Cell; 2024 Oct; 84(20):3899-3915.e7. PubMed ID: 39368466 [TBL] [Abstract][Full Text] [Related]
6. Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells. Sankaran SM; Gozani O Epigenetics; 2017; 12(11):917-922. PubMed ID: 28933651 [TBL] [Abstract][Full Text] [Related]
7. Nucleosome surface containing nucleosomal DNA entry/exit site regulates H3-K36me3 via association with RNA polymerase II and Set2. Endo H; Nakabayashi Y; Kawashima S; Enomoto T; Seki M; Horikoshi M Genes Cells; 2012 Jan; 17(1):65-81. PubMed ID: 22212475 [TBL] [Abstract][Full Text] [Related]
8. The histone methyltransferase SETD2 negatively regulates cell size. Molenaar TM; Malik M; Silva J; Liu NQ; Haarhuis JHI; Ambrosi C; Kwesi-Maliepaard EM; van Welsem T; Baubec T; Faller WJ; van Leeuwen F J Cell Sci; 2022 Oct; 135(19):. PubMed ID: 36052643 [TBL] [Abstract][Full Text] [Related]
9. Shaping the cellular landscape with Set2/SETD2 methylation. McDaniel SL; Strahl BD Cell Mol Life Sci; 2017 Sep; 74(18):3317-3334. PubMed ID: 28386724 [TBL] [Abstract][Full Text] [Related]
10. Cryo-EM structure and biochemical analyses of the nucleosome containing the cancer-associated histone H3 mutation E97K. Kimura T; Hirai S; Kujirai T; Fujita R; Ogasawara M; Ehara H; Sekine SI; Takizawa Y; Kurumizaka H Genes Cells; 2024 Sep; 29(9):769-781. PubMed ID: 38972377 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional specificity of H3K36 methylation. Lam UTF; Tan BKY; Poh JJX; Chen ES Epigenetics Chromatin; 2022 May; 15(1):17. PubMed ID: 35581654 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Yang S; Zheng X; Lu C; Li GM; Allis CD; Li H Genes Dev; 2016 Jul; 30(14):1611-6. PubMed ID: 27474439 [TBL] [Abstract][Full Text] [Related]
13. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. Gautam D; Johnson BA; Mac M; Moody CA PLoS Pathog; 2018 Oct; 14(10):e1007367. PubMed ID: 30312361 [TBL] [Abstract][Full Text] [Related]
14. Depletion of H3K36me2 recapitulates epigenomic and phenotypic changes induced by the H3.3K36M oncohistone mutation. Rajagopalan KN; Chen X; Weinberg DN; Chen H; Majewski J; Allis CD; Lu C Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619101 [TBL] [Abstract][Full Text] [Related]
15. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Fang D; Gan H; Lee JH; Han J; Wang Z; Riester SM; Jin L; Chen J; Zhou H; Wang J; Zhang H; Yang N; Bradley EW; Ho TH; Rubin BP; Bridge JA; Thibodeau SN; Ordog T; Chen Y; van Wijnen AJ; Oliveira AM; Xu RM; Westendorf JJ; Zhang Z Science; 2016 Jun; 352(6291):1344-8. PubMed ID: 27229140 [TBL] [Abstract][Full Text] [Related]
16. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3). Berthelet J; Michail C; Bui LC; Le Coadou L; Sirri V; Wang L; Dulphy N; Dupret JM; Chomienne C; Guidez F; Rodrigues-Lima F Mol Pharmacol; 2021 Sep; 100(3):283-294. PubMed ID: 34266924 [TBL] [Abstract][Full Text] [Related]
17. Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2. Eram MS; Kuznetsova E; Li F; Lima-Fernandes E; Kennedy S; Chau I; Arrowsmith CH; Schapira M; Vedadi M Biochim Biophys Acta; 2015 Sep; 1850(9):1842-8. PubMed ID: 26002201 [TBL] [Abstract][Full Text] [Related]
18. Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation. Lee MK; Park NH; Lee SY; Kim T J Mol Biol; 2025 Jan; 437(1):168796. PubMed ID: 39299382 [TBL] [Abstract][Full Text] [Related]
20. Cryo-EM Structures of Centromeric Tri-nucleosomes Containing a Central CENP-A Nucleosome. Takizawa Y; Ho CH; Tachiwana H; Matsunami H; Kobayashi W; Suzuki M; Arimura Y; Hori T; Fukagawa T; Ohi MD; Wolf M; Kurumizaka H Structure; 2020 Jan; 28(1):44-53.e4. PubMed ID: 31711756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]