BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33972516)

  • 1. 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy.
    Läubli NF; Burri JT; Marquard J; Vogler H; Mosca G; Vertti-Quintero N; Shamsudhin N; deMello A; Grossniklaus U; Ahmed D; Nelson BJ
    Nat Commun; 2021 May; 12(1):2583. PubMed ID: 33972516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local tissue manipulation via a force- and pressure-controlled AFM micropipette for analysis of cellular processes.
    Roder P; Hille C
    Sci Rep; 2018 Apr; 8(1):5892. PubMed ID: 29651136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational manipulation of single cells and organisms using acoustic waves.
    Ahmed D; Ozcelik A; Bojanala N; Nama N; Upadhyay A; Chen Y; Hanna-Rose W; Huang TJ
    Nat Commun; 2016 Mar; 7():11085. PubMed ID: 27004764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular force microscopy for in vivo measurements of plant tissue mechanics.
    Routier-Kierzkowska AL; Weber A; Kochova P; Felekis D; Nelson BJ; Kuhlemeier C; Smith RS
    Plant Physiol; 2012 Apr; 158(4):1514-22. PubMed ID: 22353572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropipette aspiration of substrate-attached cells to estimate cell stiffness.
    Oh MJ; Kuhr F; Byfield F; Levitan I
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-animal mounts of Caenorhabditis elegans for 3D imaging using atomic force microscopy.
    Allen MJ; Kanteti R; Riehm JJ; El-Hashani E; Salgia R
    Nanomedicine; 2015 Nov; 11(8):1971-4. PubMed ID: 26282382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurement of turgor pressure and cell wall elasticity in growing pollen tubes.
    Vogler H; Burri JT; Nelson BJ; Grossniklaus U
    Methods Cell Biol; 2020; 160():297-310. PubMed ID: 32896323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foldable structures and the natural design of pollen grains.
    Katifori E; Alben S; Cerda E; Nelson DR; Dumais J
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7635-9. PubMed ID: 20404200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of antibacterial agents and drugs monitored by atomic force microscopy.
    Longo G; Kasas S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):230-44. PubMed ID: 24616433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massively Parallelized Pollen Tube Guidance and Mechanical Measurements on a Lab-on-a-Chip Platform.
    Shamsudhin N; Laeubli N; Atakan HB; Vogler H; Hu C; Haeberle W; Sebastian A; Grossniklaus U; Nelson BJ
    PLoS One; 2016; 11(12):e0168138. PubMed ID: 27977748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell Deformation by Single-beam Acoustic Trapping: A Promising Tool for Measurements of Cell Mechanics.
    Hwang JY; Kim J; Park JM; Lee C; Jung H; Lee J; Shung KK
    Sci Rep; 2016 Jun; 6():27238. PubMed ID: 27273365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Getting into shape: the mechanics behind plant morphogenesis.
    Eng RC; Sampathkumar A
    Curr Opin Plant Biol; 2018 Dec; 46():25-31. PubMed ID: 30036706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropipette Aspiration of Single Cells for Both Mechanical and Electrical Characterization.
    Pu H; Liu N; Yu J; Yang Y; Sun Y; Peng Y; Xie S; Luo J; Dong L; Chen H; Sun Y
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3185-3191. PubMed ID: 30835206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes.
    Puricelli L; Galluzzi M; Schulte C; Podestà A; Milani P
    Rev Sci Instrum; 2015 Mar; 86(3):033705. PubMed ID: 25832236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips.
    Rico F; Roca-Cusachs P; Gavara N; Farré R; Rotger M; Navajas D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021914. PubMed ID: 16196611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging.
    Chacko JV; Harke B; Canale C; Diaspro A
    J Biomed Opt; 2014; 19(10):105003. PubMed ID: 25291208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular handles for the mechanical manipulation of single-membrane proteins in living cells.
    Gorostiza P; Tombola F; Verdaguer A; Smith SB; Bustamante C; Isacoff EY
    IEEE Trans Nanobioscience; 2005 Dec; 4(4):269-76. PubMed ID: 16433292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of biological objects using acoustic bubbles: a review.
    Chen Y; Lee S
    Integr Comp Biol; 2014 Dec; 54(6):959-68. PubMed ID: 24961435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeling the force: how pollen tubes deal with obstacles.
    Burri JT; Vogler H; Läubli NF; Hu C; Grossniklaus U; Nelson BJ
    New Phytol; 2018 Oct; 220(1):187-195. PubMed ID: 29905972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial surfaces investigated using atomic force microscopy.
    Bolshakova AV; Kiselyova OI; Yaminsky IV
    Biotechnol Prog; 2004; 20(6):1615-22. PubMed ID: 15575691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.