BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33972524)

  • 1. RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex.
    Catlett TS; Onesto MM; McCann AJ; Rempel SK; Glass J; Franz DN; Gómez TM
    Nat Commun; 2021 May; 12(1):2589. PubMed ID: 33972524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuberous Sclerosis Complex (TSC) Inactivation Increases Neuronal Network Activity by Enhancing Ca
    Hisatsune C; Shimada T; Miyamoto A; Lee A; Yamagata K
    J Neurosci; 2021 Sep; 41(39):8134-8149. PubMed ID: 34417327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological intervention to restore connectivity deficits of neuronal networks derived from ASD patient iPSC with a TSC2 mutation.
    Alsaqati M; Heine VM; Harwood AJ
    Mol Autism; 2020 Oct; 11(1):80. PubMed ID: 33076974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Etiologies, Diagnosis, and Treatment of Tuberous Sclerosis Complex.
    Salussolia CL; Klonowska K; Kwiatkowski DJ; Sahin M
    Annu Rev Genomics Hum Genet; 2019 Aug; 20():217-240. PubMed ID: 31018109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of TSC1 and TSC2 proteins in neuronal axons.
    Karalis V; Wood D; Teaney NA; Sahin M
    Mol Psychiatry; 2024 Apr; 29(4):1165-1178. PubMed ID: 38212374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biallelic Mutations in
    Winden KD; Sundberg M; Yang C; Wafa SMA; Dwyer S; Chen PF; Buttermore ED; Sahin M
    J Neurosci; 2019 Nov; 39(47):9294-9305. PubMed ID: 31591157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation.
    Zucco AJ; Pozzo VD; Afinogenova A; Hart RP; Devinsky O; D'Arcangelo G
    Mol Cell Neurosci; 2018 Oct; 92():149-163. PubMed ID: 30144504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming.
    Armstrong LC; Westlake G; Snow JP; Cawthon B; Armour E; Bowman AB; Ess KC
    Hum Mol Genet; 2017 Dec; 26(23):4629-4641. PubMed ID: 28973543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin.
    Sundberg M; Tochitsky I; Buchholz DE; Winden K; Kujala V; Kapur K; Cataltepe D; Turner D; Han MJ; Woolf CJ; Hatten ME; Sahin M
    Mol Psychiatry; 2018 Nov; 23(11):2167-2183. PubMed ID: 29449635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.
    Li Y; Cao J; Chen M; Li J; Sun Y; Zhang Y; Zhu Y; Wang L; Zhang C
    Stem Cell Reports; 2017 Apr; 8(4):883-893. PubMed ID: 28344003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased degradation of FMRP contributes to neuronal hyperexcitability in tuberous sclerosis complex.
    Winden KD; Pham TT; Teaney NA; Ruiz J; Chen R; Chen C; Sahin M
    Cell Rep; 2023 Aug; 42(8):112838. PubMed ID: 37494191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High glucose concentrations mask cellular phenotypes in a stem cell model of tuberous sclerosis complex.
    Rocktäschel P; Sen A; Cader MZ
    Epilepsy Behav; 2019 Dec; 101(Pt B):106581. PubMed ID: 31761686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of mTOR signalling in neurogenesis, insights from tuberous sclerosis complex.
    Tee AR; Sampson JR; Pal DK; Bateman JM
    Semin Cell Dev Biol; 2016 Apr; 52():12-20. PubMed ID: 26849906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of TSC2 knockout cell line using CRISPR/Cas9 system and demonstration of its effects on NIH-3T3 cells.
    Wang X; Zhao Y; Wang Z; Liao Z; Zhang Y
    Cell Biochem Biophys; 2022 Dec; 80(4):681-687. PubMed ID: 36181622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1.
    Di Nardo A; Wertz MH; Kwiatkowski E; Tsai PT; Leech JD; Greene-Colozzi E; Goto J; Dilsiz P; Talos DM; Clish CB; Kwiatkowski DJ; Sahin M
    Hum Mol Genet; 2014 Jul; 23(14):3865-74. PubMed ID: 24599401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner.
    Di Nardo A; Kramvis I; Cho N; Sadowski A; Meikle L; Kwiatkowski DJ; Sahin M
    J Neurosci; 2009 May; 29(18):5926-37. PubMed ID: 19420259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling.
    Martin P; Wagh V; Reis SA; Erdin S; Beauchamp RL; Shaikh G; Talkowski M; Thiele E; Sheridan SD; Haggarty SJ; Ramesh V
    Mol Autism; 2020; 11(1):2. PubMed ID: 31921404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain(123).
    Crowell B; Lee GH; Nikolaeva I; Dal Pozzo V; D'Arcangelo G
    eNeuro; 2015; 2(6):. PubMed ID: 26693177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically engineered human cortical spheroid models of tuberous sclerosis.
    Blair JD; Hockemeyer D; Bateup HS
    Nat Med; 2018 Oct; 24(10):1568-1578. PubMed ID: 30127391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain Symptoms of Tuberous Sclerosis Complex: Pathogenesis and Treatment.
    Mizuguchi M; Ohsawa M; Kashii H; Sato A
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.