These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33972533)
1. Agricultural subsidies and global greenhouse gas emissions. Laborde D; Mamun A; Martin W; Piñeiro V; Vos R Nat Commun; 2021 May; 12(1):2601. PubMed ID: 33972533 [TBL] [Abstract][Full Text] [Related]
2. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050. Bennetzen EH; Smith P; Porter JR Glob Chang Biol; 2016 Feb; 22(2):763-81. PubMed ID: 26451699 [TBL] [Abstract][Full Text] [Related]
3. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Zhang J; Tian H; Shi H; Zhang J; Wang X; Pan S; Yang J Glob Chang Biol; 2020 Nov; 26(11):6116-6133. PubMed ID: 32697859 [TBL] [Abstract][Full Text] [Related]
4. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets. Cederberg C; Hedenus F; Wirsenius S; Sonesson U Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741 [TBL] [Abstract][Full Text] [Related]
5. Greenhouse gas emissions in the Indian agriculture sector and mitigation by best management practices and smart farming technologies-a review. Chachei K Environ Sci Pollut Res Int; 2024 Jul; 31(32):44489-44510. PubMed ID: 38951399 [TBL] [Abstract][Full Text] [Related]
6. Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices. Stevanović M; Popp A; Bodirsky BL; Humpenöder F; Müller C; Weindl I; Dietrich JP; Lotze-Campen H; Kreidenweis U; Rolinski S; Biewald A; Wang X Environ Sci Technol; 2017 Jan; 51(1):365-374. PubMed ID: 27981847 [TBL] [Abstract][Full Text] [Related]
7. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Smith P; Haberl H; Popp A; Erb KH; Lauk C; Harper R; Tubiello FN; de Siqueira Pinto A; Jafari M; Sohi S; Masera O; Böttcher H; Berndes G; Bustamante M; Ahammad H; Clark H; Dong H; Elsiddig EA; Mbow C; Ravindranath NH; Rice CW; Robledo Abad C; Romanovskaya A; Sperling F; Herrero M; House JI; Rose S Glob Chang Biol; 2013 Aug; 19(8):2285-302. PubMed ID: 23505220 [TBL] [Abstract][Full Text] [Related]
8. Impacts of intensifying or expanding cereal cropping in sub-Saharan Africa on greenhouse gas emissions and food security. van Loon MP; Hijbeek R; Ten Berge HFM; De Sy V; Ten Broeke GA; Solomon D; van Ittersum MK Glob Chang Biol; 2019 Nov; 25(11):3720-3730. PubMed ID: 31376191 [TBL] [Abstract][Full Text] [Related]
9. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia. Dace E; Muizniece I; Blumberga A; Kaczala F Sci Total Environ; 2015 Sep; 527-528():80-90. PubMed ID: 25958357 [TBL] [Abstract][Full Text] [Related]
10. Analyzing long-term dynamics of agricultural greenhouse gas emissions in Austria, 1830-2018. Lauk C; Magerl A; le Noë J; Theurl MC; Gingrich S Sci Total Environ; 2024 Feb; 911():168667. PubMed ID: 37996017 [TBL] [Abstract][Full Text] [Related]
11. Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852-2014): From traditional agriculture to conventional intensive systems. Garnier J; Le Noë J; Marescaux A; Sanz-Cobena A; Lassaletta L; Silvestre M; Thieu V; Billen G Sci Total Environ; 2019 Apr; 660():1486-1501. PubMed ID: 30743941 [TBL] [Abstract][Full Text] [Related]
12. Intensification of dairy production can increase the GHG mitigation potential of the land use sector in East Africa. Brandt P; Yesuf G; Herold M; Rufino MC Glob Chang Biol; 2020 Feb; 26(2):568-585. PubMed ID: 31617288 [TBL] [Abstract][Full Text] [Related]
13. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R; Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [TBL] [Abstract][Full Text] [Related]
14. A critical assessment of provincial-level variation in agricultural GHG emissions in China. Han J; Qu J; Maraseni TN; Xu L; Zeng J; Li H J Environ Manage; 2021 Oct; 296():113190. PubMed ID: 34271354 [TBL] [Abstract][Full Text] [Related]
15. Connecting Climate Change Mitigation to Global Land Regeneration, Doubling Worldwide Livestock, and Reduction of Early Deaths from Noncommunicable Diseases. Cundiff DK Cureus; 2023 Jan; 15(1):e33253. PubMed ID: 36741611 [TBL] [Abstract][Full Text] [Related]
16. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain. Porter SD; Reay DS; Higgins P; Bomberg E Sci Total Environ; 2016 Nov; 571():721-9. PubMed ID: 27432722 [TBL] [Abstract][Full Text] [Related]
17. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000. Parton WJ; Gutmann MP; Merchant ER; Hartman MD; Adler PR; McNeal FM; Lutz SM Proc Natl Acad Sci U S A; 2015 Aug; 112(34):E4681-8. PubMed ID: 26240366 [TBL] [Abstract][Full Text] [Related]
18. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Smith LG; Kirk GJD; Jones PJ; Williams AG Nat Commun; 2019 Oct; 10(1):4641. PubMed ID: 31641128 [TBL] [Abstract][Full Text] [Related]
19. Tillage systems as a function of greenhouse gas (GHG) emission and fuel consumption mitigation. Stošić M; Ivezić V; Tadić V Environ Sci Pollut Res Int; 2021 Apr; 28(13):16492-16503. PubMed ID: 33387317 [TBL] [Abstract][Full Text] [Related]
20. Climate smart agriculture and global food-crop production. De Pinto A; Cenacchi N; Kwon HY; Koo J; Dunston S PLoS One; 2020; 15(4):e0231764. PubMed ID: 32348336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]