BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3397325)

  • 1. Frequency dependence of synchronization of cochlear nerve fibers in the alligator lizard: evidence for a cochlear origin of timing and non-timing neural pathways.
    Rose C; Weiss TF
    Hear Res; 1988 May; 33(2):151-65. PubMed ID: 3397325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: implications for cochlear mechanisms.
    Eatock RA; Weiss TF; Otto KL
    J Neurophysiol; 1991 Jun; 65(6):1580-97. PubMed ID: 1875264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of synchronization filters in different auditory receptor organs.
    Weiss TF; Rose C
    Hear Res; 1988 May; 33(2):175-9. PubMed ID: 3397327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency selectivity of hair cells and nerve fibres in the alligator lizard cochlea.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():241-60. PubMed ID: 6663500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central projections of cochlear nerve fibers in the alligator lizard.
    Szpir MR; Sento S; Ryugo DK
    J Comp Neurol; 1990 May; 295(4):530-47. PubMed ID: 2358519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard.
    Weiss TF; Rose C
    Hear Res; 1988 May; 33(2):167-74. PubMed ID: 3397326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea.
    Eatock RA; Saeki M; Hutzler MJ
    J Neurosci; 1993 Apr; 13(4):1767-83. PubMed ID: 8385208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural tuning in the granite spiny lizard.
    Turner RG
    Hear Res; 1987; 26(3):287-99. PubMed ID: 3583929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():205-40. PubMed ID: 6663499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear nerve activity after intense sound exposure in neonatal chicks.
    Saunders JC; Doan DE; Poje CP; Fisher KA
    J Neurophysiol; 1996 Aug; 76(2):770-87. PubMed ID: 8871198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning of single fibers in the cochlear nerve of the alligator lizard: relation to receptor morphology.
    Weiss TF; Mulroy MJ; Turner RG; Pike CL
    Brain Res; 1976 Oct; 115(1):71-90. PubMed ID: 974744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial tuning curves along the chick basilar papilla in normal and sound-exposed ears.
    Lifshitz J; Furman AC; Altman KW; Saunders JC
    J Assoc Res Otolaryngol; 2004 Jun; 5(2):171-84. PubMed ID: 15357419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory stereocilia in the alligator lizard.
    Mulroy MJ; Williams RS
    Hear Res; 1987; 25(1):11-21. PubMed ID: 3804856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2889-98. PubMed ID: 18701751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Cai H; Ruggero MA
    J Neurosci; 2012 Aug; 32(31):10522-9. PubMed ID: 22855802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boundaries of two-tone rate suppression of cochlear-nerve activity.
    Schmiedt RA
    Hear Res; 1982 Aug; 7(3):335-51. PubMed ID: 7118735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relations between frequency selectivity and two-tone rate suppression in lizard cochlear-nerve fibers.
    Holton T
    Hear Res; 1980 Jan; 2(1):21-38. PubMed ID: 7351389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of hair bundle shape on hair bundle hydrodynamics of non-mammalian inner ear hair cells for the full frequency range.
    Shatz LF
    Hear Res; 2004 Sep; 195(1-2):41-53. PubMed ID: 15350278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing of cochlear responses inferred from frequency-threshold tuning curves of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Ruggero MA
    Hear Res; 2011 Feb; 272(1-2):178-86. PubMed ID: 20951191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.