BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33973447)

  • 1. [Prediction of drug-induced cell viability by SAE-XGBoost algorithm based on LINCS-L1000 perturbation signal].
    Lu J; Chen M; Qin Y; Yu X
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1346-1359. PubMed ID: 33973447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-induced cell viability prediction from LINCS-L1000 through WRFEN-XGBoost algorithm.
    Lu J; Chen M; Qin Y
    BMC Bioinformatics; 2021 Jan; 22(1):13. PubMed ID: 33407085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signatures of cell death and proliferation in perturbation transcriptomics data-from confounding factor to effective prediction.
    Szalai B; Subramanian V; Holland CH; Alföldi R; Puskás LG; Saez-Rodriguez J
    Nucleic Acids Res; 2019 Nov; 47(19):10010-10026. PubMed ID: 31552418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian approach to accurate and robust signature detection on LINCS L1000 data.
    Qiu Y; Lu T; Lim H; Xie L
    Bioinformatics; 2020 May; 36(9):2787-2795. PubMed ID: 32003771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LINCS L1000 dataset-based repositioning of CGP-60474 as a highly potent anti-endotoxemic agent.
    Han HW; Hahn S; Jeong HY; Jee JH; Nam MO; Kim HK; Lee DH; Lee SY; Choi DK; Yu JH; Min SH; Yoo J
    Sci Rep; 2018 Oct; 8(1):14969. PubMed ID: 30297806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines.
    Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes.
    Luo Q; Mo S; Xue Y; Zhang X; Gu Y; Wu L; Zhang J; Sun L; Liu M; Hu Y
    BMC Bioinformatics; 2021 Jun; 22(1):318. PubMed ID: 34116627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer learning of condition-specific perturbation in gene interactions improves drug response prediction.
    Bang D; Koo B; Kim S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i130-i139. PubMed ID: 38940127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response.
    Shahzad M; Tahir MA; Alhussein M; Mobin A; Shams Malick RA; Anwar MS
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug Signature Detection Based on L1000 Genomic and Proteomic Big Data.
    Chen W; Zhou X
    Methods Mol Biol; 2019; 1939():273-286. PubMed ID: 30848467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures.
    Duan Q; Flynn C; Niepel M; Hafner M; Muhlich JL; Fernandez NF; Rouillard AD; Tan CM; Chen EY; Golub TR; Sorger PK; Subramanian A; Ma'ayan A
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W449-60. PubMed ID: 24906883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures.
    Zuo Z; Wang P; Chen X; Tian L; Ge H; Qian D
    BMC Bioinformatics; 2021 Sep; 22(1):434. PubMed ID: 34507532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound signature detection on LINCS L1000 big data.
    Liu C; Su J; Yang F; Wei K; Ma J; Zhou X
    Mol Biosyst; 2015 Mar; 11(3):714-22. PubMed ID: 25609570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. l1kdeconv: an R package for peak calling analysis with LINCS L1000 data.
    Li Z; Li J; Yu P
    BMC Bioinformatics; 2017 Jul; 18(1):356. PubMed ID: 28750623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug Effect Prediction by Integrating L1000 Genomic and Proteomic Big Data.
    Chen W; Zhou X
    Methods Mol Biol; 2019; 1939():287-297. PubMed ID: 30848468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EXP2SL: A Machine Learning Framework for Cell-Line-Specific Synthetic Lethality Prediction.
    Wan F; Li S; Tian T; Lei Y; Zhao D; Zeng J
    Front Pharmacol; 2020; 11():112. PubMed ID: 32184722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph Structured Neural Networks for Perturbation Biology.
    Evans NJ; Mills GB; Wu G; Song X; McWeeney S
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L1000 Viewer: A Search Engine and Web Interface for the LINCS Data Repository.
    Musa A; Tripathi S; Dehmer M; Emmert-Streib F
    Front Genet; 2019; 10():557. PubMed ID: 31258549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.