These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33973451)

  • 1. [Structure-based optimization and design of CRISPR protein xCas9].
    Xue D; Zhu H; Du W; Tang H; Huang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1385-1395. PubMed ID: 33973451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.
    Kim HK; Lee S; Kim Y; Park J; Min S; Choi JW; Huang TP; Yoon S; Liu DR; Kim HH
    Nat Biomed Eng; 2020 Jan; 4(1):111-124. PubMed ID: 31937939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into a high fidelity variant of SpCas9.
    Guo M; Ren K; Zhu Y; Tang Z; Wang Y; Zhang B; Huang Z
    Cell Res; 2019 Mar; 29(3):183-192. PubMed ID: 30664728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
    Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z
    J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster.
    Ni XY; Zhou ZD; Huang J; Qiao X
    Arch Insect Biochem Physiol; 2020 May; 104(1):e21662. PubMed ID: 32027059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9.
    Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S
    FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared with SpCas9 in Genome Editing.
    Yang ZX; Fu YW; Zhao JJ; Zhang F; Li SA; Zhao M; Wen W; Zhang L; Cheng T; Zhang JP; Zhang XB
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1206-1220. PubMed ID: 36549468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the Genome-Editing Toolbox with
    Nakamura A; Yamamoto H; Yano T; Hasegawa R; Makino Y; Mitsuda N; Terakawa T; Ito S; Sugano SS
    CRISPR J; 2024 Aug; 7(4):197-209. PubMed ID: 39111827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR
    Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
    Kang M; Zuo Z; Yin Z; Gu J
    J Chem Inf Model; 2022 Jun; 62(12):3057-3066. PubMed ID: 35666156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
    Barkau CL; O'Reilly D; Rohilla KJ; Damha MJ; Gagnon KT
    Nucleic Acid Ther; 2019 Jun; 29(3):136-147. PubMed ID: 30990769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM.
    Liu Y; Liang F; Dong Z; Li S; Ye J; Qin W
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
    Maxwell CS; Jacobsen T; Marshall R; Noireaux V; Beisel CL
    Methods; 2018 Jul; 143():48-57. PubMed ID: 29486239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and Analysis of Small Molecule Inhibitors of CRISPR-Cas9 in Human Cells.
    Yang Y; Li D; Wan F; Chen B; Wu G; Li F; Ren Y; Liang P; Wan J; Songyang Z
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.