These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 33973785)
1. Enzyme-Induced Supramolecular Order in Pyrene Dipeptide Hydrogels for the Development of an Efficient Energy-Transfer Template. Kaur H; Roy S Biomacromolecules; 2021 Jun; 22(6):2393-2407. PubMed ID: 33973785 [TBL] [Abstract][Full Text] [Related]
2. Pyrene-based fluorescent supramolecular hydrogel: scaffold for energy transfer. Mukherjee S; Kar T; Das PK Chem Asian J; 2014 Oct; 9(10):2798-805. PubMed ID: 25056417 [TBL] [Abstract][Full Text] [Related]
3. Fmoc-Dipeptide/Porphyrin Molar Ratio Dictates Energy Transfer Efficiency in Nanostructures Produced by Biocatalytic Co-Assembly. Wijerathne NK; Kumar M; Ulijn RV Chemistry; 2019 Sep; 25(51):11847-11851. PubMed ID: 31353639 [TBL] [Abstract][Full Text] [Related]
4. Probing gelation ability for a library of dipeptide gelators. Awhida S; Draper ER; McDonald TO; Adams DJ J Colloid Interface Sci; 2015 Oct; 455():24-31. PubMed ID: 26047582 [TBL] [Abstract][Full Text] [Related]
5. Solvent-tunable morphology and emission of pyrene-dipeptide organogels. Bartocci S; Morbioli I; Maggini M; Mba M J Pept Sci; 2015 Dec; 21(12):871-8. PubMed ID: 26767742 [TBL] [Abstract][Full Text] [Related]
6. Biocatalytic induction of supramolecular order. Hirst AR; Roy S; Arora M; Das AK; Hodson N; Murray P; Marshall S; Javid N; Sefcik J; Boekhoven J; van Esch JH; Santabarbara S; Hunt NT; Ulijn RV Nat Chem; 2010 Dec; 2(12):1089-94. PubMed ID: 21107375 [TBL] [Abstract][Full Text] [Related]
8. Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation. Talloj SK; Mohammed M; Lin HC J Mater Chem B; 2020 Aug; 8(33):7483-7493. PubMed ID: 32667379 [TBL] [Abstract][Full Text] [Related]
9. A Low-Molecular-Weight Gelator Composed of Pyrene and Fluorene Moieties for Effective Charge Transfer in Supramolecular Ambidextrous Gel. Reddy SMM; Dorishetty P; Augustine G; Deshpande AP; Ayyadurai N; Shanmugam G Langmuir; 2017 Nov; 33(47):13504-13514. PubMed ID: 29135262 [TBL] [Abstract][Full Text] [Related]
11. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781 [TBL] [Abstract][Full Text] [Related]
12. Enzyme assisted peptide self-assemblies trigger cell adhesion in high density oxime based host gels. Criado-Gonzalez M; Loftin B; Rodon Fores J; Vautier D; Kocgozlu L; Jierry L; Schaaf P; Boulmedais F; Harth E J Mater Chem B; 2020 May; 8(20):4419-4427. PubMed ID: 32186320 [TBL] [Abstract][Full Text] [Related]
13. Triggering Supramolecular Hydrogelation Using a Protein-Peptide Coassembly Approach. Jain R; Pal VK; Roy S Biomacromolecules; 2020 Oct; 21(10):4180-4193. PubMed ID: 32786522 [TBL] [Abstract][Full Text] [Related]
14. Self-Assembly of Unprotected Dipeptides into Hydrogels: Water-Channels Make the Difference. Bellotto O; Kralj S; Melchionna M; Pengo P; Kisovec M; Podobnik M; De Zorzi R; Marchesan S Chembiochem; 2022 Jan; 23(2):e202100518. PubMed ID: 34784433 [TBL] [Abstract][Full Text] [Related]
15. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. Martin AD; Wojciechowski JP; Warren H; in het Panhuis M; Thordarson P Soft Matter; 2016 Mar; 12(10):2700-7. PubMed ID: 26860207 [TBL] [Abstract][Full Text] [Related]
16. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles. Fleming S; Debnath S; Frederix PW; Hunt NT; Ulijn RV Biomacromolecules; 2014 Apr; 15(4):1171-84. PubMed ID: 24568678 [TBL] [Abstract][Full Text] [Related]