BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33974000)

  • 1. Funm6AViewer: a web server and R package for functional analysis of context-specific m6A RNA methylation.
    Zhang SY; Zhang SW; Tang Y; Fan XN; Meng J
    Bioinformatics; 2021 Nov; 37(22):4277-4279. PubMed ID: 33974000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FunDMDeep-m6A: identification and prioritization of functional differential m6A methylation genes.
    Zhang SY; Zhang SW; Fan XN; Zhang T; Meng J; Huang Y
    Bioinformatics; 2019 Jul; 35(14):i90-i98. PubMed ID: 31510685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.
    Chen K; Wei Z; Zhang Q; Wu X; Rong R; Lu Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2019 Apr; 47(7):e41. PubMed ID: 30993345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks.
    Zhang SY; Zhang SW; Liu L; Meng J; Huang Y
    PLoS Comput Biol; 2016 Dec; 12(12):e1005287. PubMed ID: 28027310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. m6Acomet: large-scale functional prediction of individual m
    Wu X; Wei Z; Chen K; Zhang Q; Su J; Liu H; Zhang L; Meng J
    BMC Bioinformatics; 2019 May; 20(1):223. PubMed ID: 31046660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. m6A-TSHub: Unveiling the Context-specific m
    Song B; Huang D; Zhang Y; Wei Z; Su J; Pedro de Magalhães J; Rigden DJ; Meng J; Chen K
    Genomics Proteomics Bioinformatics; 2023 Aug; 21(4):678-694. PubMed ID: 36096444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome.
    Liu H; Wang H; Wei Z; Zhang S; Hua G; Zhang SW; Zhang L; Gao SJ; Meng J; Chen X; Huang Y
    Nucleic Acids Res; 2018 Jan; 46(D1):D281-D287. PubMed ID: 29126312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome.
    Tang Y; Chen K; Song B; Ma J; Wu X; Xu Q; Wei Z; Su J; Liu G; Rong R; Lu Z; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D134-D143. PubMed ID: 32821938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. m6A-Maize: Weakly supervised prediction of m
    Liang Z; Zhang L; Chen H; Huang D; Song B
    Methods; 2022 Jul; 203():226-232. PubMed ID: 34843978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WHISTLE: A Functionally Annotated High-Accuracy Map of Human m
    Xu Q; Chen K; Meng J
    Methods Mol Biol; 2021; 2284():519-529. PubMed ID: 33835461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ConsRM: collection and large-scale prediction of the evolutionarily conserved RNA methylation sites, with implications for the functional epitranscriptome.
    Song B; Chen K; Tang Y; Wei Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33993206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential RNA methylation using multivariate statistical methods.
    Ayyala DN; Lin J; Ouyang Z
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34586372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. m6A-Atlas v2.0: updated resources for unraveling the N6-methyladenosine (m6A) epitranscriptome among multiple species.
    Liang Z; Ye H; Ma J; Wei Z; Wang Y; Zhang Y; Huang D; Song B; Meng J; Rigden DJ; Chen K
    Nucleic Acids Res; 2024 Jan; 52(D1):D194-D202. PubMed ID: 37587690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package.
    Meng J; Lu Z; Liu H; Zhang L; Zhang S; Chen Y; Rao MK; Huang Y
    Methods; 2014 Oct; 69(3):274-81. PubMed ID: 24979058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined RIP-seq protocol for epitranscriptome analysis with low input materials.
    Zeng Y; Wang S; Gao S; Soares F; Ahmed M; Guo H; Wang M; Hua JT; Guan J; Moran MF; Tsao MS; He HH
    PLoS Biol; 2018 Sep; 16(9):e2006092. PubMed ID: 30212448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MeT-DB V2.0: Elucidating Context-Specific Functions of N6-Methyl-Adenosine Methyltranscriptome.
    Liu H; Ma J; Meng J; Zhang L
    Methods Mol Biol; 2021; 2284():507-518. PubMed ID: 33835460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposition of RNA methylome reveals co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome.
    Liu L; Zhang SW; Zhang YC; Liu H; Zhang L; Chen R; Huang Y; Meng J
    Mol Biosyst; 2015 Jan; 11(1):262-74. PubMed ID: 25370990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitranscriptomics: Correlation of N6-methyladenosine RNA methylation and pathway dysregulation in the hippocampus of HIV transgenic rats.
    Fu Y; Zorman B; Sumazin P; Sanna PP; Repunte-Canonigo V
    PLoS One; 2019; 14(1):e0203566. PubMed ID: 30653517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MoAIMS: efficient software for detection of enriched regions of MeRIP-Seq.
    Zhang Y; Hamada M
    BMC Bioinformatics; 2020 Mar; 21(1):103. PubMed ID: 32171255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data.
    Cui X; Meng J; Zhang S; Chen Y; Huang Y
    Bioinformatics; 2016 Jun; 32(12):i378-i385. PubMed ID: 27307641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.