BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33974050)

  • 1. Efficient electrotransformation of Rhodococcus ruber YYL with abundant extracellular polymeric substances via a cell wall-weakening strategy.
    Huang H; Liu Z; Qiu Y; Wang X; Wang H; Xiao H; Lu Z
    FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 33974050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical combination of operating parameters can significantly increase the electrotransformation efficiency of a gram-positive Dietzia strain.
    Lu S; Nie Y; Tang YQ; Xiong G; Wu XL
    J Microbiol Methods; 2014 Aug; 103():144-51. PubMed ID: 24892513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress.
    Liu Z; Huang H; Qi M; Wang X; Adebanjo OO; Lu Z
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran.
    He Z; Yao Y; Lu Z; Ye Y
    Appl Environ Microbiol; 2014 May; 80(9):2656-64. PubMed ID: 24532074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The optimization system for preparation of TG1 competent cells and electrotransformation.
    Chai D; Wang G; Fang L; Li H; Liu S; Zhu H; Zheng J
    Microbiologyopen; 2020 Jul; 9(7):e1043. PubMed ID: 32394632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of penicillin G on the electroporation of Rhodococcus rhodochrous CF222.
    Sunairi M; Iwabuchi N; Murakami K; Watanabe F; Ogawa Y; Murooka H; Nakajima M
    Lett Appl Microbiol; 1996 Jan; 22(1):66-9. PubMed ID: 8588890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation.
    Yao Y; Lu Z; Zhu F; Min H; Bian C
    J Hazard Mater; 2013 Oct; 261():550-8. PubMed ID: 23994653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol.
    Papagianni M; Avramidis N; Filioussis G
    BMC Biotechnol; 2007 Mar; 7():15. PubMed ID: 17374174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrotransformation of thermophilic bacterium Caldimonas manganoxidans.
    Arai T; Aikawa S; Sudesh K; Kondo T; Kosugi A
    J Microbiol Methods; 2022 Jan; 192():106375. PubMed ID: 34793853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved electroporation of Rhodococcus equi.
    Sekizaki T; Tanoue T; Osaki M; Shimoji Y; Tsubaki S; Takai S
    J Vet Med Sci; 1998 Feb; 60(2):277-9. PubMed ID: 9524960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (LAB).
    Wang C; Cui Y; Qu X
    J Microbiol Methods; 2020 Jul; 174():105944. PubMed ID: 32417130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in Peptidoglycan Synthesis Gene
    Liu J; Wang Y; Lu Y; Ni X; Guo X; Zhao J; Chen J; Dele-Osibanjo T; Zheng P; Sun J; Ma Y
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30341076
    [No Abstract]   [Full Text] [Related]  

  • 13. Improvement of electroporation-mediated transformation efficiency for a Bifidobacterium strain to a reproducibly high level.
    Park MJ; Park MS; Ji GE
    J Microbiol Methods; 2019 Apr; 159():112-119. PubMed ID: 30529116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High efficiency electrotransformation of Lactobacillus casei.
    Welker DL; Hughes JE; Steele JL; Broadbent JR
    FEMS Microbiol Lett; 2015 Jan; 362(2):1-6. PubMed ID: 25670703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH Stress-Induced Cooperation between
    Liu Z; He Z; Huang H; Ran X; Oluwafunmilayo AO; Lu Z
    Front Microbiol; 2017; 8():2297. PubMed ID: 29209303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the electro-transformation efficiency of Corynebacterium glutamicum by weakening its cell wall and increasing the cytoplasmic membrane fluidity.
    Ruan Y; Zhu L; Li Q
    Biotechnol Lett; 2015 Dec; 37(12):2445-52. PubMed ID: 26354854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of electrotransformation conditions for Leuconostoc mesenteroides subsp. mesenteroides ATCC8293.
    Jin Q; Eom HJ; Jung JY; Moon JS; Kim JH; Han NS
    Lett Appl Microbiol; 2012 Oct; 55(4):314-21. PubMed ID: 22897881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation.
    Shao Z; Dick WA; Behki RM
    Lett Appl Microbiol; 1995 Oct; 21(4):261-6. PubMed ID: 7576519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber.
    Sivan A; Szanto M; Pavlov V
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):346-52. PubMed ID: 16534612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA.
    van der Rest ME; Lange C; Molenaar D
    Appl Microbiol Biotechnol; 1999 Oct; 52(4):541-5. PubMed ID: 10570802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.