These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3397406)

  • 1. Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors.
    Williams DS; Linberg KA; Vaughan DK; Fariss RN; Fisher SK
    J Comp Neurol; 1988 Jun; 272(2):161-76. PubMed ID: 3397406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin-dependent myoid elongation in teleost rod inner/outer segments occurs in the absence of net actin polymerization.
    Pagh-Roehl K; Brandenburger J; Wang E; Burnside B
    Cell Motil Cytoskeleton; 1992; 21(3):235-51. PubMed ID: 1581976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochalasin D disrupts outer segment disc morphogenesis in situ in rabbit retina.
    Vaughan DK; Fisher SK
    Invest Ophthalmol Vis Sci; 1989 Feb; 30(2):339-42. PubMed ID: 2914762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actin network in the ciliary stalk of photoreceptors functions in the generation of new outer segment discs.
    Hale IL; Fisher SK; Matsumoto B
    J Comp Neurol; 1996 Dec; 376(1):128-42. PubMed ID: 8946288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunoferritin localization of actin in retinal photoreceptors.
    Chaitin MH; Bok D
    Invest Ophthalmol Vis Sci; 1986 Dec; 27(12):1764-7. PubMed ID: 3793408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of actin filaments and immunocolocalization of alpha-actinin in the connecting cilium of rat photoreceptors.
    Arikawa K; Williams DS
    J Comp Neurol; 1989 Oct; 288(4):640-6. PubMed ID: 2808754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin filament polarity at the site of rod outer segment disk morphogenesis.
    Chaitin MH; Burnside B
    Invest Ophthalmol Vis Sci; 1989 Dec; 30(12):2461-9. PubMed ID: 2592159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane turnover in rod photoreceptors: ensheathment and phagocytosis of outer segment distal tips by pseudopodia of the retinal pigment epithelium.
    Matsumoto B; Defoe DM; Besharse JC
    Proc R Soc Lond B Biol Sci; 1987 Apr; 230(1260):339-54. PubMed ID: 2438704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of disk margin structure during renewal of cone outer segments in the vertebrate retina.
    Corless JM; Worniałło E; Fetter RD
    J Comp Neurol; 1989 Sep; 287(4):531-44. PubMed ID: 2794132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth.
    She BR; Liou GG; Lin-Chao S
    Exp Cell Res; 2002 Feb; 273(1):34-44. PubMed ID: 11795944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural features of the terminal loop region of frog retinal rod outer segment disk membranes: III. Implications of the terminal loop complex for disk morphogenesis, membrane fusion, and cell surface interactions.
    Corless JM; Fetter RD
    J Comp Neurol; 1987 Mar; 257(1):24-38. PubMed ID: 3494752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disc morphogenesis in vertebrate photoreceptors.
    Steinberg RH; Fisher SK; Anderson DH
    J Comp Neurol; 1980 Apr; 190(3):501-8. PubMed ID: 6771304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure of rod outer segments to serum is not responsible for abnormal disk membrane morphogenesis in a model of retinal detachment.
    Kaplan MW
    Curr Eye Res; 1998 Aug; 17(8):793-7. PubMed ID: 9723994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organization of microfilaments in spreading platelets: a comparison with fibroblasts and glial cells.
    Karlsson R; Lassing I; Höglund AS; Lindberg U
    J Cell Physiol; 1984 Oct; 121(1):96-113. PubMed ID: 6541224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing microtubule- and actin-dependent forces in the development and maintenance of structural polarity in retinal photoreceptors.
    Madreperla SA; Adler R
    Dev Biol; 1989 Jan; 131(1):149-60. PubMed ID: 2642427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments.
    Ybot-Gonzalez P; Copp AJ
    Dev Dyn; 1999 Jul; 215(3):273-83. PubMed ID: 10398537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis.
    Nemet I; Tian G; Imanishi Y
    J Neurosci; 2014 Jun; 34(24):8164-74. PubMed ID: 24920621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin 3A transgene expression produces abnormal actin filament bundles in transgenic Xenopus laevis rod photoreceptors.
    Lin-Jones J; Parker E; Wu M; Dosé A; Burnside B
    J Cell Sci; 2004 Nov; 117(Pt 24):5825-34. PubMed ID: 15522885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that microtubules do not mediate opsin vesicle transport in photoreceptors.
    Vaughan DK; Fisher SK; Bernstein SA; Hale IL; Linberg KA; Matsumoto B
    J Cell Biol; 1989 Dec; 109(6 Pt 1):3053-62. PubMed ID: 2687292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of microfilaments in cranial neurulation in rat embryos: effects of short-term exposure to cytochalasin D.
    Morriss-Kay G; Tuckett F
    J Embryol Exp Morphol; 1985 Aug; 88():333-48. PubMed ID: 4078537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.