BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33974066)

  • 21. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.
    Hecht K; Wrba A; Jaenicke R
    Eur J Biochem; 1989 Jul; 183(1):69-74. PubMed ID: 2753046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis.
    Sorokin DY; Makarova KS; Abbas B; Ferrer M; Golyshin PN; Galinski EA; Ciordia S; Mena MC; Merkel AY; Wolf YI; van Loosdrecht MCM; Koonin EV
    Nat Microbiol; 2017 May; 2():17081. PubMed ID: 28555626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptation to extreme environments: macromolecular dynamics in complex systems.
    Tehei M; Zaccai G
    Biochim Biophys Acta; 2005 Aug; 1724(3):404-10. PubMed ID: 15951115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial Diversity in an Arid, Naturally Saline Environment.
    Bachran M; Kluge S; Lopez-Fernandez M; Cherkouk A
    Microb Ecol; 2019 Aug; 78(2):494-505. PubMed ID: 30593603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvent interactions of halophilic malate dehydrogenase.
    Ebel C; Costenaro L; Pascu M; Faou P; Kernel B; Proust-De Martin F; Zaccai G
    Biochemistry; 2002 Nov; 41(44):13234-44. PubMed ID: 12403625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Malate Synthase and β-Methylmalyl Coenzyme A Lyase Reactions in the Methylaspartate Cycle in Haloarcula hispanica.
    Borjian F; Han J; Hou J; Xiang H; Zarzycki J; Berg IA
    J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotechnological potential of halobacteria.
    Rodriguez-Valera F
    Biochem Soc Symp; 1992; 58():135-47. PubMed ID: 1445403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin.
    Raut P; Glass JB; Lieberman RL
    Proteins; 2021 Feb; 89(2):232-241. PubMed ID: 32935885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Species Widely Distributed in Halophilic Archaea Exhibit Opsin-Mediated Inhibition of Bacterioruberin Biosynthesis.
    Peck RF; Graham SM; Gregory AM
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30373756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study.
    Oren A; Hirschberg J; Mann V; Jehlička J
    Extremophiles; 2018 May; 22(3):359-366. PubMed ID: 29335805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning, sequencing, and expression in Escherichia coli of the gene coding for malate dehydrogenase of the extremely halophilic archaebacterium Haloarcula marismortui.
    Cendrin F; Chroboczek J; Zaccai G; Eisenberg H; Mevarech M
    Biochemistry; 1993 Apr; 32(16):4308-13. PubMed ID: 8476859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes.
    Paul S; Bag SK; Das S; Harvill ET; Dutta C
    Genome Biol; 2008 Apr; 9(4):R70. PubMed ID: 18397532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov.
    Gupta RS; Naushad S; Fabros R; Adeolu M
    Antonie Van Leeuwenhoek; 2016 Apr; 109(4):565-87. PubMed ID: 26837779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophoresis and isoelectric focusing of whole cell and membrane proteins from the extremely halophilic archaebacteria.
    Stan-Lotter H; Lang FJ; Hochstein LI
    Appl Theor Electrophor; 1989; 1(3):147-53. PubMed ID: 2535117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales.
    Andam CP; Harlow TJ; Papke RT; Gogarten JP
    BMC Evol Biol; 2012 Jun; 12():85. PubMed ID: 22694720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomics of Halophilic archaea.
    Joo WA; Kim CW
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):237-50. PubMed ID: 15652813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems.
    Andrei AŞ; Banciu HL; Oren A
    FEMS Microbiol Lett; 2012 May; 330(1):1-9. PubMed ID: 22339687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response.
    Becker EA; Seitzer PM; Tritt A; Larsen D; Krusor M; Yao AI; Wu D; Madern D; Eisen JA; Darling AE; Facciotti MT
    PLoS Genet; 2014 Nov; 10(11):e1004784. PubMed ID: 25393412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilization of halophilic malate dehydrogenase.
    Zaccai G; Cendrin F; Haik Y; Borochov N; Eisenberg H
    J Mol Biol; 1989 Aug; 208(3):491-500. PubMed ID: 2795658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.