These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3397414)

  • 1. Modeling of rumen water kinetics and effects of rumen pH changes.
    Argyle JL; Baldwin RL
    J Dairy Sci; 1988 May; 71(5):1178-88. PubMed ID: 3397414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a mechanistic model to represent the dynamics of liquid flow out of the rumen and to predict the rate of passage of liquid in dairy cattle.
    Seo S; Lanzas C; Tedeschi LO; Fox DG
    J Dairy Sci; 2007 Feb; 90(2):840-55. PubMed ID: 17235161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of time at suboptimal pH on rumen fermentation in a dual-flow continuous culture system.
    Cerrato-Sánchez M; Calsamiglia S; Ferret A
    J Dairy Sci; 2007 Mar; 90(3):1486-92. PubMed ID: 17297122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH.
    Calsamiglia S; Cardozo PW; Ferret A; Bach A
    J Anim Sci; 2008 Mar; 86(3):702-11. PubMed ID: 18073289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of forage proportion and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed neutral detergent fiber and starch contents.
    Lechartier C; Peyraud JL
    J Dairy Sci; 2010 Feb; 93(2):666-81. PubMed ID: 20105538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows.
    Iqbal S; Zebeli Q; Mazzolari A; Bertoni G; Dunn SM; Yang WZ; Ametaj BN
    J Dairy Sci; 2009 Dec; 92(12):6023-32. PubMed ID: 19923605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows.
    Bannink A; Kogut J; Dijkstra J; France J; Kebreab E; Van Vuuren AM; Tamminga S
    J Theor Biol; 2006 Jan; 238(1):36-51. PubMed ID: 16111711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of patterns of suboptimal pH on rumen fermentation in a dual-flow continuous culture system.
    Cerrato-Sánchez M; Calsamiglia S; Ferret A
    J Dairy Sci; 2007 Sep; 90(9):4368-77. PubMed ID: 17699058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net flux of nutrients across the rumen wall of lactating dairy cows as influenced by dietary supplements of folic acid.
    Girard CL; Benchaar C; Chiquette J; Desrochers A
    J Dairy Sci; 2009 Dec; 92(12):6116-22. PubMed ID: 19923614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postweaning age effects on rumen fermentation end-products and digesta kinetics in calves weaned at 5 weeks of age.
    Vazquez-Anon M; Heinrichs AJ; Aldrich JM; Varga GA
    J Dairy Sci; 1993 Sep; 76(9):2742-8. PubMed ID: 8227677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system.
    Cerrato-Sánchez M; Calsamiglia S; Ferret A
    J Anim Sci; 2008 Feb; 86(2):378-83. PubMed ID: 17998434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems.
    Castillejos L; Calsamiglia S; Ferret A
    J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of three concentrate feeding frequencies on rumen protozoa, rumen digesta kinetics, and milk yield in dairy cows.
    Yang CM; Varga GA
    J Dairy Sci; 1989 Apr; 72(4):950-7. PubMed ID: 2745815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets.
    Robles V; González LA; Ferret A; Manteca X; Calsamiglia S
    J Anim Sci; 2007 Oct; 85(10):2538-47. PubMed ID: 17609471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of diet fermentability on efficiency of microbial nitrogen production in lactating dairy cows.
    Oba M; Allen MS
    J Dairy Sci; 2003 Jan; 86(1):195-207. PubMed ID: 12613865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of increasing levels of refined cornstarch in the diet of lactating dairy cows on performance and ruminal pH.
    Krause KM; Combs DK; Beauchemin KA
    J Dairy Sci; 2003 Apr; 86(4):1341-53. PubMed ID: 12741560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of maturity of grass silage and flaked corn starch on the production and metabolism of volatile fatty acids in dairy cows.
    De Visser H; Klop A; van der Meulen J; van Vuuren AM
    J Dairy Sci; 1998 Apr; 81(4):1028-35. PubMed ID: 9594392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production.
    Beauchemin KA; Yang WZ; Rode LM
    J Dairy Sci; 2003 Feb; 86(2):630-43. PubMed ID: 12647969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of concentrate supplementation on nutrient flow to the omasum in dairy cows receiving freshly cut grass.
    Sairanen A; Khalili H; Nousiainen JI; Ahvenjärvi S; Huhtanen P
    J Dairy Sci; 2005 Apr; 88(4):1443-53. PubMed ID: 15778313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of corn silage particle size on eating behavior, chewing activities, and rumen fermentation in lactating dairy cows.
    Kononoff PJ; Heinrichs AJ; Lehman HA
    J Dairy Sci; 2003 Oct; 86(10):3343-53. PubMed ID: 14594254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.