These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 33974149)

  • 1. Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning.
    Nowak S; Mesropyan N; Faron A; Block W; Reuter M; Attenberger UI; Luetkens JA; Sprinkart AM
    Eur Radiol; 2021 Nov; 31(11):8807-8815. PubMed ID: 33974149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning supports the differentiation of alcoholic and other-than-alcoholic cirrhosis based on MRI.
    Luetkens JA; Nowak S; Mesropyan N; Block W; Praktiknjo M; Chang J; Bauckhage C; Sifa R; Sprinkart AM; Faron A; Attenberger U
    Sci Rep; 2022 May; 12(1):8297. PubMed ID: 35585118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks.
    Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B
    Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic Assessment of Liver Fibrosis Using One-Dimensional Convolutional Neural Networks Based on Frequency Spectra of Radiofrequency Signals with Deep Learning Segmentation of Liver Regions in B-Mode Images: A Feasibility Study.
    Ai H; Huang Y; Tai DI; Tsui PH; Zhou Z
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain- and task-specific transfer learning for medical segmentation tasks.
    Zoetmulder R; Gavves E; Caan M; Marquering H
    Comput Methods Programs Biomed; 2022 Feb; 214():106539. PubMed ID: 34875512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI.
    Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C
    Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic liver segmentation and assessment of liver fibrosis using deep learning with MR T1-weighted images in rats.
    Zhang W; Zhao N; Gao Y; Huang B; Wang L; Zhou X; Li Z
    Magn Reson Imaging; 2024 Apr; 107():1-7. PubMed ID: 38147969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics.
    Gross M; Huber S; Arora S; Ze'evi T; Haider SP; Kucukkaya AS; Iseke S; Kuhn TN; Gebauer B; Michallek F; Dewey M; Vilgrain V; Sartoris R; Ronot M; Jaffe A; Strazzabosco M; Chapiro J; Onofrey JA
    Eur Radiol; 2024 Aug; 34(8):5056-5065. PubMed ID: 38217704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT.
    Papadomanolakis TN; Sergaki ES; Polydorou AA; Krasoudakis AG; Makris-Tsalikis GN; Polydorou AA; Afentakis NM; Athanasiou SA; Vardiambasis IO; Zervakis ME
    Brain Sci; 2023 Feb; 13(2):. PubMed ID: 36831891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved performance and consistency of deep learning 3D liver segmentation with heterogeneous cancer stages in magnetic resonance imaging.
    Gross M; Spektor M; Jaffe A; Kucukkaya AS; Iseke S; Haider SP; Strazzabosco M; Chapiro J; Onofrey JA
    PLoS One; 2021; 16(12):e0260630. PubMed ID: 34852007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration.
    Ghavami N; Hu Y; Gibson E; Bonmati E; Emberton M; Moore CM; Barratt DC
    Med Image Anal; 2019 Dec; 58():101558. PubMed ID: 31526965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.