These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33974155)

  • 1. Micromotor-mediated sperm constrictions for improved swimming performance.
    Striggow F; Nadporozhskaia L; Friedrich BM; Schmidt OG; Medina-Sánchez M
    Eur Phys J E Soft Matter; 2021 May; 44(5):67. PubMed ID: 33974155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetotactic Sperm Cells for Assisted Reproduction.
    Striggow F; Ribeiro C; Aziz A; Nauber R; Hebenstreit F; Schmidt OG; Medina-Sánchez M
    Small; 2024 Jun; 20(23):e2310288. PubMed ID: 38150615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Episodic rolling and transient attachments create diversity in sperm swimming behavior.
    Babcock DF; Wandernoth PM; Wennemuth G
    BMC Biol; 2014 Aug; 12():67. PubMed ID: 25182562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells.
    Bukatin A; Kukhtevich I; Stoop N; Dunkel J; Kantsler V
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15904-9. PubMed ID: 26655343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media.
    Striggow F; Medina-Sánchez M; Auernhammer GK; Magdanz V; Friedrich BM; Schmidt OG
    Small; 2020 Jun; 16(24):e2000213. PubMed ID: 32431083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic evolution of sperm swimming: Optimal flagella by a genetic algorithm.
    Ishimoto K
    J Theor Biol; 2016 Jun; 399():166-74. PubMed ID: 27063642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human sperm swimming in a high viscosity mucus analogue.
    Ishimoto K; Gadêlha H; Gaffney EA; Smith DJ; Kirkman-Brown J
    J Theor Biol; 2018 Jun; 446():1-10. PubMed ID: 29462624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions.
    Guerrero A; Carneiro J; Pimentel A; Wood CD; Corkidi G; Darszon A
    Mol Hum Reprod; 2011 Aug; 17(8):511-23. PubMed ID: 21642645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow-induced buckling dynamics of sperm flagella.
    Kumar M; Walkama DM; Guasto JS; Ardekani AM
    Phys Rev E; 2019 Dec; 100(6-1):063107. PubMed ID: 31962458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flagellar Propulsion of Sperm Cells Against a Time-Periodic Interaction Force.
    Wang Z; Klingner A; Magdanz V; Hoppenreijs MW; Misra S; Khalil ISM
    Adv Biol (Weinh); 2023 Jan; 7(1):e2200210. PubMed ID: 36266967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human sperm rotate with a conserved direction during free swimming in four dimensions.
    Corkidi G; Montoya F; González-Cota AL; Hernández-Herrera P; Bruce NC; Bloomfield-Gadêlha H; Darszon A
    J Cell Sci; 2023 Nov; 136(22):. PubMed ID: 37902031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion of bovine spermatozoa during the transition from individual cells to bundles.
    Zhang K; Klingner A; Le Gars Y; Misra S; Magdanz V; Khalil ISM
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2211911120. PubMed ID: 36638212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling biochemistry and hydrodynamics captures hyperactivated sperm motility in a simple flagellar model.
    Olson SD; Suarez SS; Fauci LJ
    J Theor Biol; 2011 Aug; 283(1):203-16. PubMed ID: 21669209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flagellar ultrastructure suppresses buckling instabilities and enables mammalian sperm navigation in high-viscosity media.
    Gadêlha H; Gaffney EA
    J R Soc Interface; 2019 Mar; 16(152):20180668. PubMed ID: 30890052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory.
    Friedrich BM; Riedel-Kruse IH; Howard J; Jülicher F
    J Exp Biol; 2010 Apr; 213(Pt 8):1226-34. PubMed ID: 20348333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement characteristics and acrosomal status of rabbit spermatozoa recovered at the site and time of fertilization.
    Suarez SS; Katz DF; Overstreet JW
    Biol Reprod; 1983 Dec; 29(5):1277-87. PubMed ID: 6652189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on the change of spermatozoa flagellar beating forces before and after capacitation.
    Battistella A; Andolfi L; Stebel M; Ciubotaru C; Lazzarino M
    Biomater Adv; 2023 Feb; 145():213242. PubMed ID: 36549152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory mechanisms of sperm flagellar motility by metachronal and synchronous sliding of doublet microtubules.
    Takei GL; Fujinoki M; Yoshida K; Ishijima S
    Mol Hum Reprod; 2017 Dec; 23(12):817-826. PubMed ID: 29040653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of osmolality, morphology perturbations and intracellular nucleotide content during the movement of sea bass (Dicentrarchus labrax) spermatozoa.
    Dreanno C; Cosson J; Suquet M; Cibert C; Fauvel C; Dorange G; Billard R
    J Reprod Fertil; 1999 May; 116(1):113-25. PubMed ID: 10505062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamics of the double-wave structure of insect spermatozoa flagella.
    Pak OS; Spagnolie SE; Lauga E
    J R Soc Interface; 2012 Aug; 9(73):1908-24. PubMed ID: 22298815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.