These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 33974182)
1. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea. Karpova N; Shagdarova B; Lunkov A; Il'ina A; Varlamov V Biotechnol Lett; 2021 Aug; 43(8):1565-1574. PubMed ID: 33974182 [TBL] [Abstract][Full Text] [Related]
2. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220 [TBL] [Abstract][Full Text] [Related]
3. Effect of combined Bacillomycin D and chitosan on growth of Rhizopus stolonifer and Botrytis cinerea and cherry tomato preservation. Lin F; Huang Z; Chen Y; Zhou L; Chen M; Sun J; Lu Z; Lu Y J Sci Food Agric; 2021 Jan; 101(1):229-239. PubMed ID: 32627181 [TBL] [Abstract][Full Text] [Related]
4. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15. Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053 [TBL] [Abstract][Full Text] [Related]
5. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry. Khan AR; Ali Q; Ayaz M; Bilal MS; Tariq H; El-Komy MH; Gu Q; Wu H; Vater J; Gao X Pestic Biochem Physiol; 2024 Aug; 203():105995. PubMed ID: 39084769 [TBL] [Abstract][Full Text] [Related]
6. Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea. Ayoub F; Ben Oujji N; Chebli B; Ayoub M; Hafidi A; Salghi R; Jodeh S Microb Pathog; 2017 Apr; 105():74-80. PubMed ID: 28192222 [TBL] [Abstract][Full Text] [Related]
7. Primary Mode of Action of the Novel Sulfonamide Fungicide against Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447 [No Abstract] [Full Text] [Related]
8. Hexaconazole Application Saves the Loss of Grey Mold Disease but Hinders Tomato Fruit Ripening in Healthy Plants. Deng Y; Liu R; Zheng M; Cai C; Diao J; Zhou Z J Agric Food Chem; 2022 Apr; 70(13):3948-3957. PubMed ID: 35324179 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and effects of the selective oxidation of chitosan in induced disease resistance against Botrytis cinerea. Gao K; Zhan J; Qin Y; Liu S; Xing R; Yu H; Chen X; Li P Carbohydr Polym; 2021 Aug; 265():118073. PubMed ID: 33966837 [TBL] [Abstract][Full Text] [Related]
10. Difenoconazole Resistance Shift in Zhang C; Imran M; Xiao L; Hu Z; Li G; Zhang F; Liu X Plant Dis; 2021 Feb; 105(2):400-407. PubMed ID: 32729807 [TBL] [Abstract][Full Text] [Related]
11. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea. Maung CEH; Lee HG; Cho JY; Kim KY World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104 [TBL] [Abstract][Full Text] [Related]
12. Buckwheat Antifungal Protein with Biocontrol Potential To Inhibit Fungal ( Botrytis cinerea) Infection of Cherry Tomato. Wang C; Yuan S; Zhang W; Ng T; Ye X J Agric Food Chem; 2019 Jun; 67(24):6748-6756. PubMed ID: 31136167 [TBL] [Abstract][Full Text] [Related]
13. Development of novel 2-substituted acylaminoethylsulfonamide derivatives as fungicides against Botrytis cinerea. Wang M; Du Y; Liu C; Yang X; Qin P; Qi Z; Ji M; Li X Bioorg Chem; 2019 Jun; 87():56-69. PubMed ID: 30877868 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides. Rahman MH; Shovan LR; Hjeljord LG; Aam BB; Eijsink VG; Sørlie M; Tronsmo A PLoS One; 2014; 9(4):e93192. PubMed ID: 24770723 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3beta-hydroxy-kaurenoic acid. Cotoras M; Folch C; Mendoza L J Agric Food Chem; 2004 May; 52(10):2821-6. PubMed ID: 15137820 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action. Wang J; Xia XM; Wang HY; Li PP; Wang KY Int J Food Microbiol; 2013 Feb; 161(3):151-7. PubMed ID: 23333340 [TBL] [Abstract][Full Text] [Related]
17. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea. Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530 [TBL] [Abstract][Full Text] [Related]
18. Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold. Rodríguez A; Acosta A; Rodríguez C World J Microbiol Biotechnol; 2014 Sep; 30(9):2397-406. PubMed ID: 24817605 [TBL] [Abstract][Full Text] [Related]
19. Antifungal Activity of Eugenol Derivatives against Olea AF; Bravo A; Martínez R; Thomas M; Sedan C; Espinoza L; Zambrano E; Carvajal D; Silva-Moreno E; Carrasco H Molecules; 2019 Mar; 24(7):. PubMed ID: 30934962 [No Abstract] [Full Text] [Related]
20. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection. Guo Y; Chen J; Ren D; Du B; Wu L; Zhang Y; Wang Z; Qian S Bioorg Med Chem; 2021 Jun; 40():116184. PubMed ID: 33971489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]