These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 33974213)

  • 1. Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain.
    Madan CR
    Neuroinformatics; 2022 Jan; 20(1):109-137. PubMed ID: 33974213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging.
    Finn ES; Glerean E; Khojandi AY; Nielson D; Molfese PJ; Handwerker DA; Bandettini PA
    Neuroimage; 2020 Jul; 215():116828. PubMed ID: 32276065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ten simple rules for predictive modeling of individual differences in neuroimaging.
    Scheinost D; Noble S; Horien C; Greene AS; Lake EM; Salehi M; Gao S; Shen X; O'Connor D; Barron DS; Yip SW; Rosenberg MD; Constable RT
    Neuroimage; 2019 Jun; 193():35-45. PubMed ID: 30831310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micapipe: A pipeline for multimodal neuroimaging and connectome analysis.
    Cruces RR; Royer J; Herholz P; Larivière S; Vos de Wael R; Paquola C; Benkarim O; Park BY; Degré-Pelletier J; Nelson MC; DeKraker J; Leppert IR; Tardif C; Poline JB; Concha L; Bernhardt BC
    Neuroimage; 2022 Nov; 263():119612. PubMed ID: 36070839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain structure-function associations identified in large-scale neuroimaging data.
    Yang Z; Qiu J; Wang P; Liu R; Zuo XN
    Brain Struct Funct; 2016 Dec; 221(9):4459-4474. PubMed ID: 26749003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connectomics reconciles seemingly irreconcilable neuroimaging findings.
    Xia M; He Y
    Trends Cogn Sci; 2023 Jun; 27(6):512-513. PubMed ID: 37100641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Human Connectome Project's neuroimaging approach.
    Glasser MF; Smith SM; Marcus DS; Andersson JL; Auerbach EJ; Behrens TE; Coalson TS; Harms MP; Jenkinson M; Moeller S; Robinson EC; Sotiropoulos SN; Xu J; Yacoub E; Ugurbil K; Van Essen DC
    Nat Neurosci; 2016 Aug; 19(9):1175-87. PubMed ID: 27571196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Lifespan Human Connectome Project in Aging: An overview.
    Bookheimer SY; Salat DH; Terpstra M; Ances BM; Barch DM; Buckner RL; Burgess GC; Curtiss SW; Diaz-Santos M; Elam JS; Fischl B; Greve DN; Hagy HA; Harms MP; Hatch OM; Hedden T; Hodge C; Japardi KC; Kuhn TP; Ly TK; Smith SM; Somerville LH; Uğurbil K; van der Kouwe A; Van Essen D; Woods RP; Yacoub E
    Neuroimage; 2019 Jan; 185():335-348. PubMed ID: 30332613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Person-specific and precision neuroimaging: Current methods and future directions.
    Michon KJ; Khammash D; Simmonite M; Hamlin AM; Polk TA
    Neuroimage; 2022 Nov; 263():119589. PubMed ID: 36030062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data leakage inflates prediction performance in connectome-based machine learning models.
    Rosenblatt M; Tejavibulya L; Jiang R; Noble S; Scheinost D
    Nat Commun; 2024 Feb; 15(1):1829. PubMed ID: 38418819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large-scale fMRI dataset for the visual processing of naturalistic scenes.
    Gong Z; Zhou M; Dai Y; Wen Y; Liu Y; Zhen Z
    Sci Data; 2023 Aug; 10(1):559. PubMed ID: 37612327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FEMA: Fast and efficient mixed-effects algorithm for large sample whole-brain imaging data.
    Parekh P; Fan CC; Frei O; Palmer CE; Smith DM; Makowski C; Iversen JR; Pecheva D; Holland D; Loughnan R; Nedelec P; Thompson WK; Hagler DJ; Andreassen OA; Jernigan TL; Nichols TE; Dale AM
    Hum Brain Mapp; 2024 Feb; 45(2):e26579. PubMed ID: 38339910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5-21 year olds.
    Somerville LH; Bookheimer SY; Buckner RL; Burgess GC; Curtiss SW; Dapretto M; Elam JS; Gaffrey MS; Harms MP; Hodge C; Kandala S; Kastman EK; Nichols TE; Schlaggar BL; Smith SM; Thomas KM; Yacoub E; Van Essen DC; Barch DM
    Neuroimage; 2018 Dec; 183():456-468. PubMed ID: 30142446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting-state fMRI in the Human Connectome Project.
    Smith SM; Beckmann CF; Andersson J; Auerbach EJ; Bijsterbosch J; Douaud G; Duff E; Feinberg DA; Griffanti L; Harms MP; Kelly M; Laumann T; Miller KL; Moeller S; Petersen S; Power J; Salimi-Khorshidi G; Snyder AZ; Vu AT; Woolrich MW; Xu J; Yacoub E; Uğurbil K; Van Essen DC; Glasser MF;
    Neuroimage; 2013 Oct; 80():144-68. PubMed ID: 23702415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dyconnmap: Dynamic connectome mapping-A neuroimaging python module.
    Marimpis AD; Dimitriadis SI; Goebel R
    Hum Brain Mapp; 2021 Oct; 42(15):4909-4939. PubMed ID: 34250674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data.
    Yu M; Linn KA; Cook PA; Phillips ML; McInnis M; Fava M; Trivedi MH; Weissman MM; Shinohara RT; Sheline YI
    Hum Brain Mapp; 2018 Nov; 39(11):4213-4227. PubMed ID: 29962049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing diversity in connectomics with the Chinese Human Connectome Project.
    Ge J; Yang G; Han M; Zhou S; Men W; Qin L; Lyu B; Li H; Wang H; Rao H; Cui Z; Liu H; Zuo XN; Gao JH
    Nat Neurosci; 2023 Jan; 26(1):163-172. PubMed ID: 36536245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An open science resource for establishing reliability and reproducibility in functional connectomics.
    Zuo XN; Anderson JS; Bellec P; Birn RM; Biswal BB; Blautzik J; Breitner JC; Buckner RL; Calhoun VD; Castellanos FX; Chen A; Chen B; Chen J; Chen X; Colcombe SJ; Courtney W; Craddock RC; Di Martino A; Dong HM; Fu X; Gong Q; Gorgolewski KJ; Han Y; He Y; He Y; Ho E; Holmes A; Hou XH; Huckins J; Jiang T; Jiang Y; Kelley W; Kelly C; King M; LaConte SM; Lainhart JE; Lei X; Li HJ; Li K; Li K; Lin Q; Liu D; Liu J; Liu X; Liu Y; Lu G; Lu J; Luna B; Luo J; Lurie D; Mao Y; Margulies DS; Mayer AR; Meindl T; Meyerand ME; Nan W; Nielsen JA; O'Connor D; Paulsen D; Prabhakaran V; Qi Z; Qiu J; Shao C; Shehzad Z; Tang W; Villringer A; Wang H; Wang K; Wei D; Wei GX; Weng XC; Wu X; Xu T; Yang N; Yang Z; Zang YF; Zhang L; Zhang Q; Zhang Z; Zhang Z; Zhao K; Zhen Z; Zhou Y; Zhu XT; Milham MP
    Sci Data; 2014; 1():140049. PubMed ID: 25977800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.