BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33974339)

  • 1. Highly Soluble Supertetrahedra upon Selective Partial Butylation of Chalcogenido Metalate Clusters in Ionic Liquids.
    Peters B; Stuhrmann G; Mack F; Weigend F; Dehnen S
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17622-17628. PubMed ID: 33974339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionothermal Access to Defined Oligomers of Supertetrahedral Selenido Germanate Clusters.
    Wu Z; Nußbruch I; Nier S; Dehnen S
    JACS Au; 2022 Jan; 2(1):204-213. PubMed ID: 35098237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective and benign alkylation of sulfido-oxo stannate clusters with propyl, pentyl, or hexyl substituents.
    Stuhrmann G; Schneider J; Schmidt K; Dehnen S
    Chem Commun (Camb); 2023 Nov; 59(88):13171-13174. PubMed ID: 37850229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Expansion of Chalcogenido Tetrelates in Ionic Liquids by Incorporation of Sulfido Antimonate Units.
    Peters B; Krampe C; Klärner J; Dehnen S
    Chemistry; 2020 Dec; 26(70):16683-16689. PubMed ID: 32876359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionothermal Approach to Homo- and Heteroleptic Alkylation of Tellurido Mercurate Clusters for Assembly in Lamellar Crystal Structures.
    Tallu M; Peters B; Friedrich A; Dehnen S
    Inorg Chem; 2023 Aug; 62(34):13943-13952. PubMed ID: 37581490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete Supertetrahedral Tn Chalcogenido Clusters Synthesized in Ionic Liquids: Crystal Structures and Photocatalytic Activity.
    Peng Y; Hu Q; Liu Y; Li J; Huang X
    Chempluschem; 2020 Nov; 85(11):2487-2498. PubMed ID: 33215856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic Liquid-Driven Formation of and Cation Exchange in Layered Sulfido Stannates - a CH
    Peters B; Möbs M; Michel N; Tambornino F; Dehnen S
    ChemistryOpen; 2021 Feb; 10(2):227-232. PubMed ID: 33565724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-Selective Assembly of Supertetrahedral Selenido Germanate Clusters for Alkali Metal Ion Capture and Separation.
    Wu Z; Weigend F; Fenske D; Naumann T; Gottfried JM; Dehnen S
    J Am Chem Soc; 2023 Feb; 145(6):3802-3811. PubMed ID: 36720465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble Supertetrahedral Chalcogenido T4 Clusters: High Stability and Enhanced Hydrogen Evolution Activities.
    Hao M; Hu Q; Zhang Y; Luo M; Wang Y; Hu B; Li J; Huang X
    Inorg Chem; 2019 Apr; 58(8):5126-5133. PubMed ID: 30946583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic liquid cations as methylation agent for extremely weak chalcogenido metalate nucleophiles.
    Peters B; Santner S; Donsbach C; Vöpel P; Smarsly B; Dehnen S
    Chem Sci; 2019 May; 10(20):5211-5217. PubMed ID: 31191876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties.
    Yang DD; Li W; Xiong WW; Li JR; Huang XY
    Dalton Trans; 2018 May; 47(17):5977-5984. PubMed ID: 29589630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine Tunable, Redox Active Octapalladium Chains Supported by Linear Tetraphosphines, Leading to Dynamically 1D Self-Assembled Coordination Polymers.
    Tanase T; Nakamae K; Miyano H; Ura Y; Kitagawa Y; Yada S; Yoshimura T; Nakajima T
    Chemistry; 2021 Aug; 27(47):12078-12103. PubMed ID: 34155699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of structures and electronic spectra in molecular cadmium chalcogenide clusters.
    Nguyen KA; Pachter R; Day PN; Su H
    J Chem Phys; 2015 Jun; 142(23):234305. PubMed ID: 26093557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing up the size limit of chalcogenide supertetrahedral clusters: two- and three-dimensional photoluminescent open frameworks from (Cu(5)In(30)S(54))(13-) clusters.
    Bu X; Zheng N; Li Y; Feng P
    J Am Chem Soc; 2002 Oct; 124(43):12646-7. PubMed ID: 12392396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-Metal-Induced Rearrangement of [(PhSn)
    Dornsiepen E; Weigend F; Dehnen S
    Chemistry; 2019 Feb; 25(10):2486-2490. PubMed ID: 30600847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudotetrahedral Organotin-Capped Chalcogenidometalate Supermolecules with Optical Limiting Performance.
    Luo MB; Lai HD; Huang SL; Zhang J; Lin Q
    J Am Chem Soc; 2024 Mar; 146(11):7690-7697. PubMed ID: 38442013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver-Sulfur Hybrid Supertetrahedral Clusters: The Hitherto Missing Members in the Metal-Chalcogenide Tetrahedral Clusters.
    Luo GG; Su HF; Xiao A; Wang Z; Zhao Y; Wu QY; Wu JH; Sun D; Zheng LS
    Chemistry; 2017 Oct; 23(58):14420-14424. PubMed ID: 28875580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superbase route to supertetrahedral chalcogenide clusters.
    Wu T; Bu X; Liao P; Wang L; Zheng ST; Ma R; Feng P
    J Am Chem Soc; 2012 Feb; 134(8):3619-22. PubMed ID: 22335388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Discrete Ligand-Free T3 Supertetrahedral Cluster of Gallium Sulfide.
    Makin S; Vaqueiro P
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.