BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33974548)

  • 1. Prediction of Synthetic Lethal Interactions in Human Cancers Using Multi-View Graph Auto-Encoder.
    Hao Z; Wu D; Fang Y; Wu M; Cai R; Li X
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):4041-4051. PubMed ID: 33974548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.
    Huang J; Wu M; Lu F; Ou-Yang L; Zhu Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):657. PubMed ID: 31870274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph contextualized attention network for predicting synthetic lethality in human cancers.
    Long Y; Wu M; Liu Y; Zheng J; Kwoh CK; Luo J; Li X
    Bioinformatics; 2021 Aug; 37(16):2432-2440. PubMed ID: 33609108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
    Liu X; Yu J; Tao S; Yang B; Wang S; Wang L; Bai F; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii106-ii112. PubMed ID: 36124788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction.
    Fan K; Tang S; Gökbağ B; Cheng L; Li L
    Front Genet; 2022; 13():1103092. PubMed ID: 36699450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MPASL: multi-perspective learning knowledge graph attention network for synthetic lethality prediction in human cancer.
    Zhang G; Chen Y; Yan C; Wang J; Liang W; Luo J; Luo H
    Front Pharmacol; 2024; 15():1398231. PubMed ID: 38835667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SynLethDB 2.0: a web-based knowledge graph database on synthetic lethality for novel anticancer drug discovery.
    Wang J; Wu M; Huang X; Wang L; Zhang S; Liu H; Zheng J
    Database (Oxford); 2022 May; 2022():. PubMed ID: 35562840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers.
    Wang S; Feng Y; Liu X; Liu Y; Wu M; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii13-ii19. PubMed ID: 36124790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
    Cai R; Chen X; Fang Y; Wu M; Hao Y
    Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.
    Zhu Y; Zhou Y; Liu Y; Wang X; Li J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36645245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
    Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MAGCN: A Multiple Attention Graph Convolution Networks for Predicting Synthetic Lethality.
    Lu X; Chen G; Li J; Hu X; Sun F
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2681-2689. PubMed ID: 36374879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality.
    Zhang K; Wu M; Liu Y; Feng Y; Zheng J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i158-i167. PubMed ID: 37387166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.
    Guo J; Liu H; Zheng J
    Nucleic Acids Res; 2016 Jan; 44(D1):D1011-7. PubMed ID: 26516187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network.
    Lai M; Chen G; Yang H; Yang J; Jiang Z; Wu M; Zheng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1731-1734. PubMed ID: 34891621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LncRNA-disease association identification using graph auto-encoder and learning to rank.
    Liang Q; Zhang W; Wu H; Liu B
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36545805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.