These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33974686)

  • 1. Plant thermotropism: an underexplored thermal engagement and avoidance strategy.
    Zanten MV; Ai H; Quint M
    J Exp Bot; 2021 May; ():. PubMed ID: 33974686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental polarity shapes thermo-induced nastic movements in plants.
    Kim JY; Park YJ; Lee JH; Park CM
    Plant Signal Behav; 2019; 14(8):1617609. PubMed ID: 31084457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment.
    Polko JK; Voesenek LA; Peeters AJ; Pierik R
    AoB Plants; 2011; 2011():plr031. PubMed ID: 22476501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship of cold acclimation and extracellular ice formation to winter thermonasty in two Rhododendron species and their F
    Arora R; Krebs SL; Wisniewski ME
    Am J Bot; 2021 Oct; 108(10):1946-1956. PubMed ID: 34687044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental Programming of Thermonastic Leaf Movement.
    Park YJ; Lee HJ; Gil KE; Kim JY; Lee JH; Lee H; Cho HT; Vu LD; De Smet I; Park CM
    Plant Physiol; 2019 Jun; 180(2):1185-1197. PubMed ID: 30948554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of thermotropism in primary roots of maize: dependence on temperature and temperature gradient, and interaction with gravitropism.
    Fortin M-C ; Poff KL
    Planta; 1991; 184():410-4. PubMed ID: 11538117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of thermotropism in primary roots of maize: Dependence on temperature and temperature gradient, and interaction with gravitropism.
    Fortin MC; Poff KL
    Planta; 1991 Jun; 184(3):410-4. PubMed ID: 24194160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical basis for thermonastic movements of cold-hardy
    Wang H; Nilsen ET; Upmanyu M
    J R Soc Interface; 2020 Mar; 17(164):20190751. PubMed ID: 32156184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specialized herbivory in fossil leaves reveals convergent origins of nyctinasty.
    Feng Z; Sui Q; Yang JY; Guo Y; McLoughlin S
    Curr Biol; 2023 Feb; 33(4):720-726.e2. PubMed ID: 36796358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation and distribution of picloram in bean plants associated with nastic movements.
    Reid CP; Hurtt W
    Plant Physiol; 1969 Oct; 44(10):1393-6. PubMed ID: 16657215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast estimation of plant growth dynamics using deep neural networks.
    Gall GEC; Pereira TD; Jordan A; Meroz Y
    Plant Methods; 2022 Feb; 18(1):21. PubMed ID: 35184723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement.
    Kong SG; Wada M
    Biochim Biophys Acta; 2014 Apr; 1837(4):522-30. PubMed ID: 24333784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian leaf movements facilitate overtopping of neighbors.
    Woodley Of Menie MA; Pawlik P; Webb MT; Bruce KD; Devlin PF
    Prog Biophys Mol Biol; 2019 Sep; 146():104-111. PubMed ID: 30597150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A General 3D Model for Growth Dynamics of Sensory-Growth Systems: From Plants to Robotics.
    Porat A; Tedone F; Palladino M; Marcati P; Meroz Y
    Front Robot AI; 2020; 7():89. PubMed ID: 33501256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermonasty of young main stems of Phryma leptostachya (Phrymaceae).
    Endo Y; Miyauchi T
    J Plant Res; 2006 Sep; 119(5):449-57. PubMed ID: 16896529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the diurnal pattern of leaf hyponasty and growth in Arabidopsis - a novel phenotyping approach using laser scanning.
    Dornbusch T; Lorrain SV; Kuznetsov D; Fortier A; Liechti R; Xenarios I; Fankhauser C
    Funct Plant Biol; 2012 Nov; 39(11):860-869. PubMed ID: 32480836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nastic response of maize (Zea mays L.) coleoptiles during clinostat rotation.
    Nick P; Schafer E
    Planta; 1989 Aug; 179(1):123-31. PubMed ID: 11540758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shade avoidance and the regulation of leaf inclination in Arabidopsis.
    Mullen JL; Weinig C; Hangarter RP
    Plant Cell Environ; 2006 Jun; 29(6):1099-106. PubMed ID: 17080936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanodetection of neighbor plants elicits adaptive leaf movements through calcium dynamics.
    Pantazopoulou CK; Buti S; Nguyen CT; Oskam L; Weits DA; Farmer EE; Kajala K; Pierik R
    Nat Commun; 2023 Sep; 14(1):5827. PubMed ID: 37730832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared thermography of in situ natural freezing and mechanism of winter-thermonasty in Rhododendron maximum.
    Arora R; Wisniewski M; Tuong T; Livingston D
    Physiol Plant; 2023 Mar; 175(2):e13876. PubMed ID: 36808742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.