These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33974839)

  • 21. Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution.
    Kailasam K; Fischer A; Zhang G; Zhang J; Schwarze M; Schröder M; Wang X; Schomäcker R; Thomas A
    ChemSusChem; 2015 Apr; 8(8):1404-10. PubMed ID: 25801956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoscale wide-band semiconductors for photocatalytic remediation of aquatic pollution.
    Sarkar B; Daware AV; Gupta P; Krishnani KK; Baruah S; Bhattacharjee S
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25775-25797. PubMed ID: 28988306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncovering the Key Role of the Fermi Level of the Electron Mediator in a Z-Scheme Photocatalyst by Detecting the Charge Transfer Process of WO3-metal-gC3N4 (Metal = Cu, Ag, Au).
    Li H; Yu H; Quan X; Chen S; Zhang Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2111-9. PubMed ID: 26728189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO3 semiconductor catalyst.
    Qamar M; Gondal MA; Hayat K; Yamani ZH; Al-Hooshani K
    J Hazard Mater; 2009 Oct; 170(2-3):584-9. PubMed ID: 19540669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZnSe-WO
    Kumar A; Naushad M; Rana A; Inamuddin ; Preeti ; Sharma G; Ghfar AA; Stadler FJ; Khan MR
    Int J Biol Macromol; 2017 Nov; 104(Pt A):1172-1184. PubMed ID: 28673846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of N-Doped Magnetic WO
    Gholami P; Khataee A; Bhatnagar A; Vahid B
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13072-13086. PubMed ID: 33720681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light.
    Kim J; Lee CW; Choi W
    Environ Sci Technol; 2010 Sep; 44(17):6849-54. PubMed ID: 20698551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anionic polyacrylamide-assisted construction of thin 2D-2D WO
    Pan T; Chen D; Xu W; Fang J; Wu S; Liu Z; Wu K; Fang Z
    J Hazard Mater; 2020 Jul; 393():122366. PubMed ID: 32120212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tungsten oxide nanostructures peculiarity and photocatalytic activity for the efficient elimination of the organic pollutant.
    Jamwal D; Mutreja V; Rahul ; Mehta SK; Katoch A; Kim SS
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77032-77043. PubMed ID: 37253911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Well-controlled in-situ growth of 2D WO
    Ahmed B; Ojha AK; Singh A; Hirsch F; Fischer I; Patrice D; Materny A
    J Hazard Mater; 2018 Apr; 347():266-278. PubMed ID: 29329009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosting light-driven CO
    Patial S; Kumar R; Raizada P; Singh P; Van Le Q; Lichtfouse E; Le Tri Nguyen D; Nguyen VH
    Environ Res; 2021 Jun; 197():111134. PubMed ID: 33836181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving Photoelectrochemical Properties of Anodic WO
    Zych M; Syrek K; Zaraska L; Sulka GD
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32630395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved photoelectrochemical properties of tungsten oxide by modification with plasmonic gold nanoparticles for the non-enzymatic sensing of ethanol.
    Li B; Chen Y; Peng A; Chen X; Chen X
    J Colloid Interface Sci; 2019 Mar; 537():528-535. PubMed ID: 30469120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes.
    Guo Y; Quan X; Lu N; Zhao H; Chen S
    Environ Sci Technol; 2007 Jun; 41(12):4422-7. PubMed ID: 17626446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-radical activation of H
    Zhang AY; Zhao PC; He YY; Zhou Y; Feng JW
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1898-1911. PubMed ID: 31760621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes.
    Höfle S; Bruns M; Strässle S; Feldmann C; Lemmer U; Colsmann A
    Adv Mater; 2013 Aug; 25(30):4113-6. PubMed ID: 23813694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-Efficient Photocatalytic Properties in Porous Tungsten Oxide/Graphene Film under Visible Light Irradiation.
    Mei L; Zhao H; Lu B
    Adv Sci (Weinh); 2015 Dec; 2(12):1500116. PubMed ID: 27980919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrathin oxygen-vacancy abundant WO
    Zhang M; Lai C; Li B; Huang D; Liu S; Qin L; Yi H; Fu Y; Xu F; Li M; Li L
    J Colloid Interface Sci; 2019 Nov; 556():557-567. PubMed ID: 31476488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.