BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

630 related articles for article (PubMed ID: 33974913)

  • 21. Protein quality control degron-containing substrates are differentially targeted in the cytoplasm and nucleus by ubiquitin ligases.
    Hickey CM; Breckel C; Zhang M; Theune WC; Hochstrasser M
    Genetics; 2021 Mar; 217(1):1-19. PubMed ID: 33683364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast.
    Tong Z; Kim MS; Pandey A; Espenshade PJ
    Mol Cell Proteomics; 2014 Nov; 13(11):2871-82. PubMed ID: 25078903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in catabolite-induced degradation of gluconeogenic enzymes.
    Menssen R; Schweiggert J; Schreiner J; Kusevic D; Reuther J; Braun B; Wolf DH
    J Biol Chem; 2012 Jul; 287(30):25602-14. PubMed ID: 22645139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A stalled retrotranslocation complex reveals physical linkage between substrate recognition and proteasomal degradation during ER-associated degradation.
    Nakatsukasa K; Brodsky JL; Kamura T
    Mol Biol Cell; 2013 Jun; 24(11):1765-75, S1-8. PubMed ID: 23536702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variation in ubiquitin system genes creates substrate-specific effects on proteasomal protein degradation.
    Collins MA; Mekonnen G; Albert FW
    Elife; 2022 Oct; 11():. PubMed ID: 36218234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.
    Summers DW; Wolfe KJ; Ren HY; Cyr DM
    PLoS One; 2013; 8(1):e52099. PubMed ID: 23341891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System.
    Guharoy M; Bhowmick P; Tompa P
    J Biol Chem; 2016 Mar; 291(13):6723-31. PubMed ID: 26851277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The E3 ubiquitin ligase Pib1 regulates effective gluconeogenic shutdown upon glucose availability.
    Vengayil V; Rashida Z; Laxman S
    J Biol Chem; 2019 Nov; 294(46):17209-17223. PubMed ID: 31604822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities.
    Crosas B; Hanna J; Kirkpatrick DS; Zhang DP; Tone Y; Hathaway NA; Buecker C; Leggett DS; Schmidt M; King RW; Gygi SP; Finley D
    Cell; 2006 Dec; 127(7):1401-13. PubMed ID: 17190603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic approaches to identify E3 ligase substrates.
    Iconomou M; Saunders DN
    Biochem J; 2016 Nov; 473(22):4083-4101. PubMed ID: 27834739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation.
    Buck TM; Zeng X; Cantrell PS; Cattley RT; Hasanbasri Z; Yates ME; Nguyen D; Yates NA; Brodsky JL
    Mol Cell Proteomics; 2020 Nov; 19(11):1896-1909. PubMed ID: 32868373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping the Landscape of a Eukaryotic Degronome.
    Geffen Y; Appleboim A; Gardner RG; Friedman N; Sadeh R; Ravid T
    Mol Cell; 2016 Sep; 63(6):1055-65. PubMed ID: 27618491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome.
    Isasa M; Katz EJ; Kim W; Yugo V; González S; Kirkpatrick DS; Thomson TM; Finley D; Gygi SP; Crosas B
    Mol Cell; 2010 Jun; 38(5):733-45. PubMed ID: 20542005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifaceted N-Degron Recognition and Ubiquitylation by GID/CTLH E3 Ligases.
    Chrustowicz J; Sherpa D; Teyra J; Loke MS; Popowicz GM; Basquin J; Sattler M; Prabu JR; Sidhu SS; Schulman BA
    J Mol Biol; 2022 Jan; 434(2):167347. PubMed ID: 34767800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular mass as a determinant for nuclear San1-dependent targeting of misfolded cytosolic proteins to proteasomal degradation.
    Amm I; Wolf DH
    FEBS Lett; 2016 Jun; 590(12):1765-75. PubMed ID: 27173001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interconversion between Anticipatory and Active GID E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly.
    Qiao S; Langlois CR; Chrustowicz J; Sherpa D; Karayel O; Hansen FM; Beier V; von Gronau S; Bollschweiler D; Schäfer T; Alpi AF; Mann M; Prabu JR; Schulman BA
    Mol Cell; 2020 Jan; 77(1):150-163.e9. PubMed ID: 31708416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro autoubiquitination activity of E3 ubiquitin ligases of the N-degron pathway.
    Sandmann A; Dissmeyer N
    Methods Enzymol; 2023; 686():205-220. PubMed ID: 37532400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Up-regulation of ubiquitin-proteasome activity upon loss of NatA-dependent N-terminal acetylation.
    Kats I; Reinbold C; Kschonsak M; Khmelinskii A; Armbruster L; Ruppert T; Knop M
    Life Sci Alliance; 2022 Feb; 5(2):. PubMed ID: 34764209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase.
    Guerriero CJ; Weiberth KF; Brodsky JL
    J Biol Chem; 2013 Jun; 288(25):18506-20. PubMed ID: 23653356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway.
    Xia Z; Webster A; Du F; Piatkov K; Ghislain M; Varshavsky A
    J Biol Chem; 2008 Aug; 283(35):24011-28. PubMed ID: 18566452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.