These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33974926)

  • 1. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites.
    Huang J; Liu W; Qiu X; Tu Z; Li J; Lou H
    Int J Biol Macromol; 2021 Jul; 183():1450-1458. PubMed ID: 33974926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers.
    Wang H; Liu W; Huang J; Yang D; Qiu X
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Interface Engineering in Elastomer/Graphene Composites by Constructing Sacrificial Metal-Ligand Bonds.
    Huang J; Tang Z; Yang Z; Guo B
    Macromol Rapid Commun; 2016 Jul; 37(13):1040-5. PubMed ID: 27229634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV-absorbent lignin-based multi-arm star thermoplastic elastomers.
    Yu J; Wang J; Wang C; Liu Y; Xu Y; Tang C; Chu F
    Macromol Rapid Commun; 2015 Feb; 36(4):398-404. PubMed ID: 25545630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically Robust, Self-Repairable, Shape Memory and Recyclable Ionomeric Elastomer Composites with Renewable Lignin via Interfacial Metal-Ligand Interactions.
    Zhang G; Tian C; Shi J; Zhang X; Liu J; Tan T; Zhang L
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):38216-38227. PubMed ID: 35950777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions.
    Sun N; Di M; Liu Y
    Int J Biol Macromol; 2021 Aug; 184():1-8. PubMed ID: 34118286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process.
    Tu Z; Liu W; Wang J; Qiu X; Huang J; Li J; Lou H
    Nat Commun; 2021 May; 12(1):2916. PubMed ID: 34006839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers.
    Abid U; Gill YQ; Irfan MS; Umer R; Saeed F
    Int J Biol Macromol; 2021 Jun; 181():1-29. PubMed ID: 33744249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-free synthesis of high-performance polyurethane elastomer based on low-molecular-weight alkali lignin.
    Huang J; Wang H; Liu W; Huang J; Yang D; Qiu X; Zhao L; Hu F; Feng Y
    Int J Biol Macromol; 2023 Jan; 225():1505-1516. PubMed ID: 36435459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the effect of four thermoplastic elastomers on the properties of double-base propellants.
    Zou X; Zhang W; Gu Y; Fu X; Zhang Z; Ge Z; Luo Y
    RSC Adv; 2020 Nov; 10(70):42883-42889. PubMed ID: 35514901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin-Based Thermoplastic Materials.
    Wang C; Kelley SS; Venditti RA
    ChemSusChem; 2016 Apr; 9(8):770-83. PubMed ID: 27059111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastomer Reinforced with Innate Sulfur-Based Cross-Links as Ligands.
    Zhang X; Yu S; Tang Z; Guo B
    ACS Macro Lett; 2019 Sep; 8(9):1091-1095. PubMed ID: 35619438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Solvents on Fe-Lignin Precursors for Production Graphene-Based Nanostructures.
    Yan Q; Cai Z
    Molecules; 2020 May; 25(9):. PubMed ID: 32384618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates.
    Utrera-Barrios S; Ricciardi O; González S; Verdejo R; López-Manchado MÁ; Hernández Santana M
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable Elastomers from Renewable Biomass.
    Wang Z; Yuan L; Tang C
    Acc Chem Res; 2017 Jul; 50(7):1762-1773. PubMed ID: 28636365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of lignin on the mechanical performance of polylactic acid and jute composites.
    Delgado-Aguilar M; Oliver-Ortega H; Alberto Méndez J; Camps J; Espinach FX; Mutjé P
    Int J Biol Macromol; 2018 Sep; 116():299-304. PubMed ID: 29698765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast-response biomimetic phototropic material built by a coordination-assisted photothermal domino strategy.
    Tu Z; Wang J; Liu W; Chen Z; Huang J; Li J; Lou H; Qiu X
    Mater Horiz; 2022 Oct; 9(10):2613-2625. PubMed ID: 35959764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer.
    Puskas JE; Foreman-Orlowski EA; Lim GT; Porosky SE; Evancho-Chapman MM; Schmidt SP; El Fray M; Piatek M; Prowans P; Lovejoy K
    Biomaterials; 2010 Mar; 31(9):2477-88. PubMed ID: 20034664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds.
    Wu X; Wang J; Huang J; Yang S
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7387-7396. PubMed ID: 30675775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Step Synthesis of Lignin-Based Triblock Copolymers as High-Temperature and UV-Blocking Thermoplastic Elastomers.
    Wan Y; He J; Zhang Y; Chen EY
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202114946. PubMed ID: 34904337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.