These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 33974950)
1. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells. Cai J; Cui Y; Yang J; Wang S Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188564. PubMed ID: 33974950 [TBL] [Abstract][Full Text] [Related]
2. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. De Cicco P; Ercolano G; Ianaro A Front Immunol; 2020; 11():1680. PubMed ID: 32849585 [TBL] [Abstract][Full Text] [Related]
3. Granulocytic Myeloid-Derived Suppressor Cells as Negative Regulators of Anticancer Immunity. Kramer ED; Abrams SI Front Immunol; 2020; 11():1963. PubMed ID: 32983128 [TBL] [Abstract][Full Text] [Related]
4. Myeloid-derived suppressor cells and tumor: Current knowledge and future perspectives. Safari E; Ghorghanlu S; Ahmadi-Khiavi H; Mehranfar S; Rezaei R; Motallebnezhad M J Cell Physiol; 2019 Jul; 234(7):9966-9981. PubMed ID: 30537008 [TBL] [Abstract][Full Text] [Related]
5. Targeting myeloid-derived suppressive cells in the tumor microenvironment to enhance the efficacy of cancer immunotherapy. Huo S; Liu L; Li Q; Wang J Discov Med; 2020; 30(161):119-128. PubMed ID: 33593480 [TBL] [Abstract][Full Text] [Related]
6. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment. Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P Front Immunol; 2020; 11():585214. PubMed ID: 33613512 [TBL] [Abstract][Full Text] [Related]
7. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment. Qu P; Wang LZ; Lin PC Cancer Lett; 2016 Sep; 380(1):253-6. PubMed ID: 26519756 [TBL] [Abstract][Full Text] [Related]
8. Tumor Plasticity and Resistance to Immunotherapy. Horn LA; Fousek K; Palena C Trends Cancer; 2020 May; 6(5):432-441. PubMed ID: 32348738 [TBL] [Abstract][Full Text] [Related]
9. Targeting myeloid-derived suppressor cells for cancer immunotherapy. Liu Y; Wei G; Cheng WA; Dong Z; Sun H; Lee VY; Cha SC; Smith DL; Kwak LW; Qin H Cancer Immunol Immunother; 2018 Aug; 67(8):1181-1195. PubMed ID: 29855694 [TBL] [Abstract][Full Text] [Related]
10. Epithelial-to-mesenchymal Transition Heterogeneity of Circulating Tumor Cells and Their Correlation With MDSCs and Tregs in HER2-negative Metastatic Breast Cancer Patients. Papadaki MA; Aggouraki D; Vetsika EK; Xenidis N; Kallergi G; Kotsakis A; Georgoulias V Anticancer Res; 2021 Feb; 41(2):661-670. PubMed ID: 33517270 [TBL] [Abstract][Full Text] [Related]
11. Implications of MDSCs-targeting in lung cancer chemo-immunotherapeutics. Adah D; Hussain M; Qin L; Qin L; Zhang J; Chen X Pharmacol Res; 2016 Aug; 110():25-34. PubMed ID: 27157248 [TBL] [Abstract][Full Text] [Related]
12. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Erin N; Grahovac J; Brozovic A; Efferth T Drug Resist Updat; 2020 Dec; 53():100715. PubMed ID: 32679188 [TBL] [Abstract][Full Text] [Related]
13. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets. Szebeni GJ; Vizler C; Nagy LI; Kitajka K; Puskas LG Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886105 [TBL] [Abstract][Full Text] [Related]
14. Tumor Immune Microenvironment during Epithelial-Mesenchymal Transition. Taki M; Abiko K; Ukita M; Murakami R; Yamanoi K; Yamaguchi K; Hamanishi J; Baba T; Matsumura N; Mandai M Clin Cancer Res; 2021 Sep; 27(17):4669-4679. PubMed ID: 33827891 [TBL] [Abstract][Full Text] [Related]
15. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Jiang Y; Zhan H Cancer Lett; 2020 Jan; 468():72-81. PubMed ID: 31605776 [TBL] [Abstract][Full Text] [Related]
16. Plasticity of myeloid-derived suppressor cells in cancer. Tcyganov E; Mastio J; Chen E; Gabrilovich DI Curr Opin Immunol; 2018 Apr; 51():76-82. PubMed ID: 29547768 [TBL] [Abstract][Full Text] [Related]
17. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Shou D; Wen L; Song Z; Yin J; Sun Q; Gong W Oncotarget; 2016 Sep; 7(39):64505-64511. PubMed ID: 27542274 [TBL] [Abstract][Full Text] [Related]
18. Mutualistic Effects of the Myeloid-Derived Suppressor Cells and Cancer Stem Cells in the Tumor Microenvironment. Tanriover G; Aytac G Crit Rev Oncog; 2019; 24(1):61-67. PubMed ID: 31679221 [TBL] [Abstract][Full Text] [Related]
19. Mesenchymal Transition of High-Grade Breast Carcinomas Depends on Extracellular Matrix Control of Myeloid Suppressor Cell Activity. Sangaletti S; Tripodo C; Santangelo A; Castioni N; Portararo P; Gulino A; Botti L; Parenza M; Cappetti B; Orlandi R; Tagliabue E; Chiodoni C; Colombo MP Cell Rep; 2016 Sep; 17(1):233-248. PubMed ID: 27681434 [TBL] [Abstract][Full Text] [Related]
20. A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Hofer F; Di Sario G; Musiu C; Sartoris S; De Sanctis F; Ugel S Cells; 2021 Oct; 10(10):. PubMed ID: 34685679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]