These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33975285)

  • 1. Frictional characteristics of graphene layers with embedded nanopores.
    Tong M; Jiang Y; Wang L; Wang C; Tang C
    Nanotechnology; 2021 May; 32(34):. PubMed ID: 33975285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of nanoscale and sub-nanoscale friction behavior between graphene and a silicon tip: analysis of tip apex motion.
    Yoon HM; Jung Y; Jun SC; Kondaraju S; Lee JS
    Nanoscale; 2015 Apr; 7(14):6295-303. PubMed ID: 25782533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of frictional forces on graphene and graphite.
    Lee H; Lee N; Seo Y; Eom J; Lee S
    Nanotechnology; 2009 Aug; 20(32):325701. PubMed ID: 19620757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frictional characteristics of atomically thin sheets.
    Lee C; Li Q; Kalb W; Liu XZ; Berger H; Carpick RW; Hone J
    Science; 2010 Apr; 328(5974):76-80. PubMed ID: 20360104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-Scale Friction on Monovacancy-Defective Graphene and Single-Layer Molybdenum-Disulfide by Numerical Analysis.
    Pang H; Wang H; Li M; Gao C
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31906488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene.
    Spear JC; Custer JP; Batteas JD
    Nanoscale; 2015 Jun; 7(22):10021-9. PubMed ID: 25899217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of High Friction at Graphene Step Edges on Graphite.
    Chen Z; Khajeh A; Martini A; Kim SH
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1895-1902. PubMed ID: 33347272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Confers Ultralow Friction on Nanogear Cogs.
    Mescola A; Paolicelli G; Ogilvie SP; Guarino R; McHugh JG; Rota A; Iacob E; Gnecco E; Valeri S; Pugno NM; Gadhamshetty V; Rahman MM; Ajayan P; Dalton AB; Tripathi M
    Small; 2021 Nov; 17(47):e2104487. PubMed ID: 34676978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of the friction strengthening of graphene on velocity.
    Zeng X; Peng Y; Liu L; Lang H; Cao X
    Nanoscale; 2018 Jan; 10(4):1855-1864. PubMed ID: 29309078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring nanoporous graphene via machine learning: Predicting probabilities and formation times of arbitrary nanopore shapes.
    Sheshanarayana R; Govind Rajan A
    J Chem Phys; 2022 May; 156(20):204703. PubMed ID: 35649838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy of Graphene Nanoflake Diamond Interface Frictional Properties.
    Zhang J; Osloub E; Siddiqui F; Zhang W; Ragab T; Basaran C
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31052418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Frictional Properties of Single-Layer Molybdenum-Disulfide Film Based on a Coupling of Tip Radius and Tip⁻Sample Distance by Molecular-Dynamics Simulations.
    Pang H; Li M; Gao C; Lai L; Zhuo W
    Nanomaterials (Basel); 2018 May; 8(6):. PubMed ID: 29857522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions.
    Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D
    ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting Frictional Characteristics of Graphene: Effect of In-Plane Straining.
    Xu C; Zhang S; Du H; Xue T; Kang Y; Zhang Y; Zhao P; Li Q
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41571-41576. PubMed ID: 36043243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frictional Properties of Nanojunctions Including Atomically Thin Sheets.
    Ouyang W; Ma M; Zheng Q; Urbakh M
    Nano Lett; 2016 Mar; 16(3):1878-83. PubMed ID: 26829154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-Induced Nonlinear Frictional Behavior of Graphene Nanowall Films.
    Ji Z; Lin Q; Huang Z; Chen S; Gong P; Sun Z; Shen B
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51608-51617. PubMed ID: 34677931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.