These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33975339)

  • 1. WDNE: an integrative graphical model for inferring differential networks from multi-platform gene expression data with missing values.
    Ou-Yang L; Cai D; Zhang XF; Yan H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33975339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Differential Networks by Integrating Gene Expression Data With Additional Knowledge.
    Liu C; Cai D; Zeng W; Huang Y
    Front Genet; 2021; 12():760155. PubMed ID: 34858477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating prior information into differential network analysis using non-paranormal graphical models.
    Zhang XF; Ou-Yang L; Yan H
    Bioinformatics; 2017 Aug; 33(16):2436-2445. PubMed ID: 28407042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying differential networks based on multi-platform gene expression data.
    Ou-Yang L; Yan H; Zhang XF
    Mol Biosyst; 2016 Dec; 13(1):183-192. PubMed ID: 27868129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Gene Network Rewiring by Integrating Gene Expression and Gene Network Data.
    Xu T; Ou-Yang L; Hu X; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):2079-2085. PubMed ID: 29994068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Network Analysis via Weighted Fused Conditional Gaussian Graphical Model.
    Ou-Yang L; Zhang XF; Hu X; Yan H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2162-2169. PubMed ID: 31247559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Varying Differential Network Analysis for Revealing Network Rewiring over Cancer Progression.
    Xu T; Ou-Yang L; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1632-1642. PubMed ID: 31647444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NJGCG: A node-based joint Gaussian copula graphical model for gene networks inference across multiple states.
    Huang Y; Huang S; Zhang XF; Ou-Yang L; Liu C
    Comput Struct Biotechnol J; 2024 Dec; 23():3199-3210. PubMed ID: 39263209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying gene regulatory network rewiring using latent differential graphical models.
    Tian D; Gu Q; Ma J
    Nucleic Acids Res; 2016 Sep; 44(17):e140. PubMed ID: 27378774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering novel cancer bio-markers in acquired lapatinib resistance using Bayesian methods.
    Azad AKM; Alyami SA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33857297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Gene Network Rewiring Based on Partial Correlation.
    Tan YT; Ou-Yang L; Jiang X; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):513-521. PubMed ID: 32750866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis.
    Guo L; Mao L; Lu W; Yang J
    Biosystems; 2021 Jan; 199():104317. PubMed ID: 33279569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential network analysis by simultaneously considering changes in gene interactions and gene expression.
    Tu JJ; Ou-Yang L; Zhu Y; Yan H; Qin H; Zhang XF
    Bioinformatics; 2021 Dec; 37(23):4414-4423. PubMed ID: 34245246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint learning of multiple gene networks from single-cell gene expression data.
    Wu N; Yin F; Ou-Yang L; Zhu Z; Xie W
    Comput Struct Biotechnol J; 2020; 18():2583-2595. PubMed ID: 33033579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance.
    Zhang M; Luo SC
    Genet Mol Res; 2016 Jan; 15(1):. PubMed ID: 26909918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.