These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33975432)

  • 1. Nonequilibrium Structure Diagram of Pendular Suspensions under Large-Amplitude Oscillatory Shear.
    Hao B; Li B; Yu W
    Langmuir; 2021 May; 37(20):6208-6218. PubMed ID: 33975432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology and microstructure of non-Brownian suspensions in the liquid and crystal coexistence region: strain stiffening in large amplitude oscillatory shear.
    Lee YK; Nam J; Hyun K; Ahn KH; Lee SJ
    Soft Matter; 2015 May; 11(20):4061-74. PubMed ID: 25909879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium structure of colloidal dumbbells under oscillatory shear.
    Heptner N; Chu F; Lu Y; Lindner P; Ballauff M; Dzubiella J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052311. PubMed ID: 26651699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids.
    Bossler F; Koos E
    Langmuir; 2016 Feb; 32(6):1489-501. PubMed ID: 26807651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction.
    Domenech T; Velankar SS
    Soft Matter; 2015 Feb; 11(8):1500-16. PubMed ID: 25582822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular-dynamics simulations on the mesophase transition induced by oscillatory shear in imidazolium-based ionic liquid crystals.
    Liu M; Shiba H; Liu H; Peng H
    Phys Chem Chem Phys; 2021 Mar; 23(11):6496-6508. PubMed ID: 33688864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large amplitude oscillatory shear study of a colloidal gel near the critical state.
    Suman K; Shanbhag S; Joshi YM
    J Chem Phys; 2023 Feb; 158(5):054907. PubMed ID: 36754789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first normal stress difference of non-Brownian hard-sphere suspensions in the oscillatory shear flow near the liquid and crystal coexistence region.
    Lee YK; Hyun K; Ahn KH
    Soft Matter; 2020 Nov; 16(43):9864-9875. PubMed ID: 33073283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition from steady shear to oscillatory shear rheology of dense suspensions.
    Dong J; Trulsson M
    Phys Rev E; 2020 Nov; 102(5-1):052605. PubMed ID: 33327063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yielding and crystallization of colloidal gels under oscillatory shear.
    Smith PA; Petekidis G; Egelhaaf SU; Poon WC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041402. PubMed ID: 17994983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-to-solid transition of concentrated suspensions under complex transient shear histories.
    Guo Y; Yu W; Xu Y; Zhou C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061404. PubMed ID: 20365172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative normal stress differences N
    Natalia I; Zeiler N; Weiß M; Koos E
    Soft Matter; 2018 May; 14(17):3254-3264. PubMed ID: 29687109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point.
    Ness C; Xing Z; Eiser E
    Soft Matter; 2017 May; 13(19):3664-3674. PubMed ID: 28451674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of dense non-Brownian suspensions with the lattice Boltzmann method: shear jammed and fragile states.
    Pradipto ; Hayakawa H
    Soft Matter; 2020 Jan; 16(4):945-959. PubMed ID: 31845696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.
    Garai A; Nandi AK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1842-51. PubMed ID: 18572585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable-amplitude oscillatory shear response of amorphous materials.
    Perchikov N; Bouchbinder E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062307. PubMed ID: 25019776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
    Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and memory of boundary stresses in discontinuous shear thickening suspensions during oscillatory shear.
    Rathee V; Blair DL; Urbach JS
    Soft Matter; 2021 Feb; 17(5):1337-1345. PubMed ID: 33319897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of liquid volume fraction and shear rate on rheological properties and microstructure formation in ternary particle/oil/water dispersion systems under shear flow: two-dimensional direct numerical simulation.
    Ishigami T; Karasudani T; Onitake S; Shirzadi M; Fukasawa T; Fukui K; Mino Y
    Soft Matter; 2022 Jun; 18(22):4338-4350. PubMed ID: 35622067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.