These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33976221)

  • 1. Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation.
    Vyklicky V; Stanley C; Habrian C; Isacoff EY
    Nat Commun; 2021 May; 12(1):2694. PubMed ID: 33976221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil.
    Tajima N; Karakas E; Grant T; Simorowski N; Diaz-Avalos R; Grigorieff N; Furukawa H
    Nature; 2016 Jun; 534(7605):63-8. PubMed ID: 27135925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors.
    Karakas E; Simorowski N; Furukawa H
    Nature; 2011 Jun; 475(7355):249-53. PubMed ID: 21677647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structurally derived model of subunit-dependent NMDA receptor function.
    Gibb AJ; Ogden KK; McDaniel MJ; Vance KM; Kell SA; Butch C; Burger P; Liotta DC; Traynelis SF
    J Physiol; 2018 Sep; 596(17):4057-4089. PubMed ID: 29917241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational spread and dynamics in allostery of NMDA receptors.
    Durham RJ; Paudyal N; Carrillo E; Bhatia NK; Maclean DM; Berka V; Dolino DM; Gorfe AA; Jayaraman V
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3839-3847. PubMed ID: 32015122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric signaling and dynamics of the clamshell-like NMDA receptor GluN1 N-terminal domain.
    Zhu S; Stroebel D; Yao CA; Taly A; Paoletti P
    Nat Struct Mol Biol; 2013 Apr; 20(4):477-85. PubMed ID: 23454977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors.
    Hansen KB; Tajima N; Risgaard R; Perszyk RE; Jørgensen L; Vance KM; Ogden KK; Clausen RP; Furukawa H; Traynelis SF
    Mol Pharmacol; 2013 Jul; 84(1):114-27. PubMed ID: 23625947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunit-selective allosteric inhibition of glycine binding to NMDA receptors.
    Hansen KB; Ogden KK; Traynelis SF
    J Neurosci; 2012 May; 32(18):6197-208. PubMed ID: 22553026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local constraints in either the GluN1 or GluN2 subunit equally impair NMDA receptor pore opening.
    Talukder I; Wollmuth LP
    J Gen Physiol; 2011 Aug; 138(2):179-94. PubMed ID: 21746848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor.
    Dolino DM; Cooper D; Ramaswamy S; Jaurich H; Landes CF; Jayaraman V
    J Biol Chem; 2015 Jan; 290(2):797-804. PubMed ID: 25404733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric Interactions between NMDA Receptor Subunits Shape the Developmental Shift in Channel Properties.
    Sun W; Hansen KB; Jahr CE
    Neuron; 2017 Apr; 94(1):58-64.e3. PubMed ID: 28384476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine residues 87 and 320 in the amino terminal domain of NMDA receptor GluN2A govern its homodimerization but do not influence GluN2A/GluN1 heteromeric assembly.
    Zhang XM; Lv XY; Tang Y; Zhu LJ; Luo JH
    Neurosci Bull; 2013 Dec; 29(6):671-84. PubMed ID: 23604598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary trace analysis of ionotropic glutamate receptor sequences and modeling the interactions of agonists with different NMDA receptor subunits.
    Blaise MC; Sowdhamini R; Rao MR; Pradhan N
    J Mol Model; 2004 Dec; 10(5-6):305-16. PubMed ID: 15597199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives.
    Sapkota K; Irvine MW; Fang G; Burnell ES; Bannister N; Volianskis A; Culley GR; Dravid SM; Collingridge GL; Jane DE; Monaghan DT
    Neuropharmacology; 2017 Oct; 125():64-79. PubMed ID: 28709671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity.
    Hughes BA; Woodward JJ
    Neuropharmacology; 2016 Jun; 105():96-105. PubMed ID: 26577016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs.
    Chou TH; Kang H; Simorowski N; Traynelis SF; Furukawa H
    Mol Cell; 2022 Dec; 82(23):4548-4563.e4. PubMed ID: 36309015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis of Functional Transitions in Mammalian NMDA Receptors.
    Chou TH; Tajima N; Romero-Hernandez A; Furukawa H
    Cell; 2020 Jul; 182(2):357-371.e13. PubMed ID: 32610085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of Triheteromeric
    Yi F; Zachariassen LG; Dorsett KN; Hansen KB
    Mol Pharmacol; 2018 May; 93(5):453-467. PubMed ID: 29483146
    [No Abstract]   [Full Text] [Related]  

  • 19. Single-Molecule Patch-Clamp FRET Anisotropy Microscopy Studies of NMDA Receptor Ion Channel Activation and Deactivation under Agonist Ligand Binding in Living Cells.
    Sasmal DK; Yadav R; Lu HP
    J Am Chem Soc; 2016 Jul; 138(28):8789-801. PubMed ID: 27270213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteromerization of ligand binding domains of N-methyl-D-aspartate receptor requires both coagonists, L-glutamate and glycine.
    Cheriyan J; Mezes C; Zhou N; Balsara RD; Castellino FJ
    Biochemistry; 2015 Jan; 54(3):787-94. PubMed ID: 25544544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.