These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33976372)

  • 1. Engineered MATE multidrug transporters reveal two functionally distinct ion-coupling pathways in NorM from Vibrio cholerae.
    Raturi S; Nair AV; Shinoda K; Singh H; Bai B; Murakami S; Fujitani H; van Veen HW
    Commun Biol; 2021 May; 4(1):558. PubMed ID: 33976372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the ion-coupling mechanism in the MATE transporter NorM-VC.
    Krah A; Zachariae U
    Phys Biol; 2017 Jun; 14(4):045009. PubMed ID: 28169223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium and proton coupling in the conformational cycle of a MATE antiporter from
    Claxton DP; Jagessar KL; Steed PR; Stein RA; Mchaourab HS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6182-E6190. PubMed ID: 29915043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights on Na(+) binding and conformational dynamics in multidrug and toxic compound extrusion transporter NorM.
    Song J; Ji C; Zhang JZ
    Proteins; 2014 Feb; 82(2):240-9. PubMed ID: 23873591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidrug transport protein norM from vibrio cholerae simultaneously couples to sodium- and proton-motive force.
    Jin Y; Nair A; van Veen HW
    J Biol Chem; 2014 May; 289(21):14624-32. PubMed ID: 24711447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na⁺-substrate coupling in the multidrug antiporter norm probed with a spin-labeled substrate.
    Steed PR; Stein RA; Mishra S; Goodman MC; McHaourab HS
    Biochemistry; 2013 Aug; 52(34):5790-9. PubMed ID: 23902581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion binding and internal hydration in the multidrug resistance secondary active transporter NorM investigated by molecular dynamics simulations.
    Vanni S; Campomanes P; Marcia M; Rothlisberger U
    Biochemistry; 2012 Feb; 51(6):1281-7. PubMed ID: 22295886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a cation-bound multidrug and toxic compound extrusion transporter.
    He X; Szewczyk P; Karyakin A; Evin M; Hong WX; Zhang Q; Chang G
    Nature; 2010 Oct; 467(7318):991-4. PubMed ID: 20861838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis of H
    Kusakizako T; Claxton DP; Tanaka Y; Maturana AD; Kuroda T; Ishitani R; Mchaourab HS; Nureki O
    Structure; 2019 Feb; 27(2):293-301.e3. PubMed ID: 30449688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications.
    Lu M
    Channels (Austin); 2016; 10(2):88-100. PubMed ID: 26488689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of NhaA, NhaB, and NhaD Na+/H+ antiporters in survival of Vibrio cholerae in a saline environment.
    Herz K; Vimont S; Padan E; Berche P
    J Bacteriol; 2003 Feb; 185(4):1236-44. PubMed ID: 12562793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics.
    Moriyama Y; Hiasa M; Matsumoto T; Omote H
    Xenobiotica; 2008 Jul; 38(7-8):1107-18. PubMed ID: 18668441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na
    Castellano S; Claxton DP; Ficici E; Kusakizako T; Stix R; Zhou W; Nureki O; Mchaourab HS; Faraldo-Gómez JD
    J Biol Chem; 2021; 296():100262. PubMed ID: 33837745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter.
    Lu M; Symersky J; Radchenko M; Koide A; Guo Y; Nie R; Koide S
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2099-104. PubMed ID: 23341609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein.
    Zhang X; He X; Baker J; Tama F; Chang G; Wright SH
    J Biol Chem; 2012 Aug; 287(33):27971-82. PubMed ID: 22722930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidrug efflux transporters in the MATE family.
    Kuroda T; Tsuchiya T
    Biochim Biophys Acta; 2009 May; 1794(5):763-8. PubMed ID: 19100867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the ion coupling mechanism of the MATE transporter ClbM.
    Krah A; Huber RG; Zachariae U; Bond PJ
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183137. PubMed ID: 31786188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into H+-coupled multidrug extrusion by a MATE transporter.
    Lu M; Radchenko M; Symersky J; Nie R; Guo Y
    Nat Struct Mol Biol; 2013 Nov; 20(11):1310-7. PubMed ID: 24141706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Xenobiotic Extrusion Mechanism of the MATE Transporter NorM_PS from Pseudomonas stutzeri.
    Eisinger ML; Nie L; Dörrbaum AR; Langer JD; Michel H
    J Mol Biol; 2018 Apr; 430(9):1311-1323. PubMed ID: 29555555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the blockade of MATE multidrug efflux pumps.
    Radchenko M; Symersky J; Nie R; Lu M
    Nat Commun; 2015 Aug; 6():7995. PubMed ID: 26246409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.