These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 33976802)
21. Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts. Romo CM; Tylianakis JM PLoS One; 2013; 8(3):e58136. PubMed ID: 23472147 [TBL] [Abstract][Full Text] [Related]
22. Alien interference: disruption of infochemical networks by invasive insect herbivores. Desurmont GA; Harvey J; van Dam NM; Cristescu SM; Schiestl FP; Cozzolino S; Anderson P; Larsson MC; Kindlmann P; Danner H; Turlings TC Plant Cell Environ; 2014 Aug; 37(8):1854-65. PubMed ID: 24689553 [TBL] [Abstract][Full Text] [Related]
23. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Clavijo McCormick A Ecol Evol; 2016 Dec; 6(23):8569-8582. PubMed ID: 28031808 [TBL] [Abstract][Full Text] [Related]
24. Asymptomatic Host Plant Infection by the Widespread Pathogen Ngah N; Thomas RL; Shaw MW; Fellowes MDE Insects; 2018 Jul; 9(3):. PubMed ID: 29986404 [TBL] [Abstract][Full Text] [Related]
25. Responses of terrestrial arthropods to air pollution: a meta-analysis. Zvereva EL; Kozlov MV Environ Sci Pollut Res Int; 2010 Feb; 17(2):297-311. PubMed ID: 19319587 [TBL] [Abstract][Full Text] [Related]
26. Beyond polyphagy and opportunism: natural prey of hunting spiders in the canopy of apple trees. Mezőfi L; Markó G; Nagy C; Korányi D; Markó V PeerJ; 2020; 8():e9334. PubMed ID: 32596048 [TBL] [Abstract][Full Text] [Related]
27. Meta-Analysis Suggests Differing Indirect Effects of Viral, Bacterial, and Fungal Plant Pathogens on the Natural Enemies of Insect Herbivores. Srisakrapikoop U; Pirie TJ; Fellowes MDE Insects; 2020 Nov; 11(11):. PubMed ID: 33171933 [TBL] [Abstract][Full Text] [Related]
28. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
29. Reduced host plant growth and increased tyrosine-derived secondary metabolites under climate change and negative consequences on its specialist herbivore. Park HJ; Nam BE; Moon SY; Kim SG; Joo Y; Kim JG Sci Total Environ; 2021 Mar; 759():143507. PubMed ID: 33223185 [TBL] [Abstract][Full Text] [Related]
30. Entomopathogenic nematodes: natural enemies of root-feeding caterpillars on bush lupine. Strong DR; Kaya HK; Whipple AV; Child AL; Kraig S; Bondonno M; Dyer K; Maron JL Oecologia; 1996 Oct; 108(1):167-173. PubMed ID: 28307747 [TBL] [Abstract][Full Text] [Related]
31. Soil nematode abundances drive agroecosystem multifunctionality under short-term elevated CO Wang J; Shi X; Lucas-Borja ME; Guo Q; Mao J; Tan Y; Zhang G Glob Chang Biol; 2023 Mar; 29(6):1618-1627. PubMed ID: 36458513 [TBL] [Abstract][Full Text] [Related]
32. Upsetting the order: how climate and atmospheric change affects herbivore-enemy interactions. Facey SL; Ellsworth DS; Staley JT; Wright DJ; Johnson SN Curr Opin Insect Sci; 2014 Nov; 5():66-74. PubMed ID: 32846744 [TBL] [Abstract][Full Text] [Related]
33. The Enemies Hypothesis: Tritrophic Interactions and Vegetational Diversity in Tropical Agroecosystems. Letourneau DK Ecology; 1987 Dec; 68(6):1616-1622. PubMed ID: 29357148 [TBL] [Abstract][Full Text] [Related]
34. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Langellotto GA; Denno RF Oecologia; 2004 Mar; 139(1):1-10. PubMed ID: 14872336 [TBL] [Abstract][Full Text] [Related]
35. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
36. Quality or quantity: the direct and indirect effects of host plants on herbivores and their natural enemies. Stiling P; Moon DC Oecologia; 2005 Jan; 142(3):413-20. PubMed ID: 15517407 [TBL] [Abstract][Full Text] [Related]
37. Effects of CO2 and temperature on tritrophic interactions. Dyer LA; Richards LA; Short SA; Dodson CD PLoS One; 2013; 8(4):e62528. PubMed ID: 23638105 [TBL] [Abstract][Full Text] [Related]
38. Chemical ecology and evolution of plant-insect interactions: a multitrophic perspective. Meiners T Curr Opin Insect Sci; 2015 Apr; 8():22-28. PubMed ID: 32846665 [TBL] [Abstract][Full Text] [Related]
40. Anti-herbivore silicon defences in a model grass are greatest under Miocene levels of atmospheric CO Biru FN; Islam T; Cibils-Stewart X; Cazzonelli CI; Elbaum R; Johnson SN Glob Chang Biol; 2021 Jun; 27(12):2959-2969. PubMed ID: 33772982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]