BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33976851)

  • 1. Location, but not defensive genotype, determines ectomycorrhizal community composition in Scots pine (
    Downie J; Taylor AFS; Iason G; Moore B; Silvertown J; Cavers S; Ennos R
    Ecol Evol; 2021 May; 11(9):4826-4842. PubMed ID: 33976851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heritable genetic variation but no local adaptation in a pine-ectomycorrhizal interaction.
    Downie J; Silvertown J; Cavers S; Ennos R
    Mycorrhiza; 2020 May; 30(2-3):185-195. PubMed ID: 32078050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza.
    Setälä H
    Oecologia; 2000 Oct; 125(1):109-118. PubMed ID: 28308212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal approach to identifying ectomycorrhizal community associated with Mongolian pine in a desert environment, northern China.
    Ren Y; Gao G; Ding G; Zhang Y; Zhao P; Wang J
    Microbiol Spectr; 2023 Sep; 11(5):e0202623. PubMed ID: 37707453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shift in ectomycorrhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover.
    Markkola AM; Ahonen-Jonnarth U; Roitto M; Strömmer R; Hyvärinen M
    Environ Pollut; 2002; 120(3):797-803. PubMed ID: 12442803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectomycorrhizal fungal species differentially affect the induced defensive chemistry of lodgepole pine.
    Kanekar SS; Cale JA; Erbilgin N
    Oecologia; 2018 Oct; 188(2):395-404. PubMed ID: 30032438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-scale spatial variability in the distribution of ectomycorrhizal fungi affects plant performance and fungal diversity.
    Livne-Luzon S; Ovadia O; Weber G; Avidan Y; Migael H; Glassman SI; Bruns TD; Shemesh H
    Ecol Lett; 2017 Sep; 20(9):1192-1202. PubMed ID: 28797140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species.
    Avolio ML; Tuininga AR; Lewis JD; Marchese M
    Mycol Res; 2009 Aug; 113(Pt 8):897-907. PubMed ID: 19465124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings.
    Huang Y; Tao S
    J Environ Sci (China); 2004; 16(3):414-9. PubMed ID: 15272714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in different micro-habitats in boreal forest.
    Iwański M; Rudawska M
    Mycorrhiza; 2007 Jul; 17(5):461-467. PubMed ID: 17503091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality.
    Pec GJ; Simard SW; Cahill JF; Karst J
    Mycorrhiza; 2020 May; 30(2-3):173-183. PubMed ID: 32088844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urban polluted forest soils induce elevated root peroxidase activity in Scots pine (Pinus sylvestris L.) seedlings.
    Markkol AM; Tarvainen O; Ahonen-Jonnarth U; Strömmer R
    Environ Pollut; 2002; 116(2):273-8. PubMed ID: 11806455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine.
    Jarvis S; Woodward S; Alexander IJ; Taylor AF
    Glob Chang Biol; 2013 Jun; 19(6):1688-96. PubMed ID: 23505218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traits and tradeoffs among non-native ectomycorrhizal fungal symbionts affect pine seedling establishment in a Hawaiian coinvasion landscape.
    Thompson L; Swift SOI; Egan CP; Yogi D; Chapin T; Hynson NA
    Mol Ecol; 2022 Aug; 31(15):4176-4187. PubMed ID: 35699341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter.
    Aucina A; Rudawska M; Leski T; Skridaila A; Riepsas E; Iwanski M
    Appl Environ Microbiol; 2007 Aug; 73(15):4867-73. PubMed ID: 17575001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings.
    Hartley J; Cairney JW; Freestone P; Woods C; Meharg AA
    Environ Pollut; 1999 Sep; 106(3):413-24. PubMed ID: 15093037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetically determined fungal pathogen tolerance and soil variation influence ectomycorrhizal traits of loblolly pine.
    Piculell BJ; Eckhardt LG; Hoeksema JD
    Ecol Evol; 2018 Oct; 8(19):9646-9656. PubMed ID: 30386564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions.
    Leski T; Aucina A; Skridaila A; Pietras M; Riepsas E; Rudawska M
    Mycorrhiza; 2010 Oct; 20(7):473-81. PubMed ID: 20155377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multitrophic interactions between a Rhizoctonia sp. and mycorrhizal fungi affect Scots pine seedling performance in nursery soil.
    Sen R
    New Phytol; 2001 Dec; 152(3):543-553. PubMed ID: 33862988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae.
    Wagg C; Pautler M; Massicotte HB; Peterson RL
    Mycorrhiza; 2008 Feb; 18(2):103-10. PubMed ID: 18157555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.