These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 33977051)

  • 1. An Investigation of Active Sites for electrochemical CO
    Zou Y; Wang S
    Adv Sci (Weinh); 2021 May; 8(9):2003579. PubMed ID: 33977051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure- and Electrolyte-Sensitivity in CO
    ArĂ¡n-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent research progresses of Sn/Bi/In-based electrocatalysts for electroreduction CO
    Liu MF; Zhang C; Wang J; Han X; Hu W; Deng Y
    Chemistry; 2024 Mar; 30(17):e202303711. PubMed ID: 38143240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction.
    Guo L; Zhou J; Liu F; Meng X; Ma Y; Hao F; Xiong Y; Fan Z
    ACS Nano; 2024 Apr; 18(14):9823-9851. PubMed ID: 38546130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate.
    Shi Y; Ji Y; Long J; Liang Y; Liu Y; Yu Y; Xiao J; Zhang B
    Nat Commun; 2020 Jul; 11(1):3415. PubMed ID: 32641692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Design of Copper Active Sites in Pristine Metal-Organic Coordination Compounds for Electrocatalytic Carbon Dioxide Reduction.
    Wang J; Wa Q; Diao Q; Liu F; Hao F; Xiong Y; Wang Y; Zhou J; Meng X; Guo L; Fan Z
    Small Methods; 2024 May; ():e2400432. PubMed ID: 38767183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Reduction of Carbon Dioxide to Ethanol: An Approach to Transforming Greenhouse Gas to Fuel Source.
    Du J; Zhang P; Liu H
    Chem Asian J; 2021 Mar; 16(6):588-603. PubMed ID: 33522132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of Metal-Organic Frameworks and Their Derivatives in Electrochemical CO
    Li C; Ji Y; Wang Y; Liu C; Chen Z; Tang J; Hong Y; Li X; Zheng T; Jiang Q; Xia C
    Nanomicro Lett; 2023 Apr; 15(1):113. PubMed ID: 37121938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction.
    Zhang J; Xia S; Wang Y; Wu J; Wu Y
    iScience; 2024 Jun; 27(6):110005. PubMed ID: 38846002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-Learning-Accelerated Catalytic Activity Predictions of Transition Metal Phthalocyanine Dual-Metal-Site Catalysts for CO
    Wan X; Zhang Z; Niu H; Yin Y; Kuai C; Wang J; Shao C; Guo Y
    J Phys Chem Lett; 2021 Jul; 12(26):6111-6118. PubMed ID: 34170687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Atom Catalysts and Dual-Atom Catalysts for CO
    Shao Y; Yuan Q; Zhou J
    Small; 2023 Oct; 19(40):e2303446. PubMed ID: 37267928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO
    Wu T; Zhang L; Zhan Y; Dong Y; Tan Z; Zhou B; Wei F; Zhang D; Long X
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nickel-based electrocatalyst size on electrochemical carbon dioxide reduction: A density functional theory study.
    Wang F; Meng Y; Chen X; Zhang L; Li G; Shen Z; Wang Y; Cao Y
    J Colloid Interface Sci; 2022 Jun; 615():587-596. PubMed ID: 35152078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifunctional Nitrogen and Cobalt Codoped Hollow Carbon for Electrochemical Syngas Production.
    Song X; Zhang H; Yang Y; Zhang B; Zuo M; Cao X; Sun J; Lin C; Li X; Jiang Z
    Adv Sci (Weinh); 2018 Jul; 5(7):1800177. PubMed ID: 30027049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoengineering Metal-Organic Framework-Based Materials for Use in Electrochemical CO
    Zhao Y; Zheng L; Jiang D; Xia W; Xu X; Yamauchi Y; Ge J; Tang J
    Small; 2021 Apr; 17(16):e2006590. PubMed ID: 33739607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Site Metal Catalysts for Electrocatalytic CO
    Liu L; Wu X; Wang F; Zhang L; Wang X; Song S; Zhang H
    Chemistry; 2023 Sep; 29(49):e202300583. PubMed ID: 37367498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Copper-Based Catalysts for Efficient Carbon Dioxide Electroreduction.
    Wang Y; Liu J; Zheng G
    Adv Mater; 2021 Nov; 33(46):e2005798. PubMed ID: 33913569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Screening of CO
    Xue W; Li J; Huang H; Zhang W; Mei D
    Inorg Chem; 2023 Jan; 62(2):930-941. PubMed ID: 36607142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering.
    Qu J; Cao X; Gao L; Li J; Li L; Xie Y; Zhao Y; Zhang J; Wu M; Liu H
    Nanomicro Lett; 2023 Jul; 15(1):178. PubMed ID: 37433948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.