These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33977444)
1. Screening Systems for Stable Markerless Genomic Deletions/Integrations in Streptomyces Species. Kormanec J; Rezuchova B; Novakova R Methods Mol Biol; 2021; 2296():91-141. PubMed ID: 33977444 [TBL] [Abstract][Full Text] [Related]
2. An efficient blue-white screening system for markerless deletions and stable integrations in Streptomyces chromosomes based on the blue pigment indigoidine biosynthetic gene bpsA. Rezuchova B; Homerova D; Sevcikova B; Núñez LE; Novakova R; Feckova L; Skultety L; Cortés J; Kormanec J Appl Microbiol Biotechnol; 2018 Dec; 102(23):10231-10244. PubMed ID: 30259098 [TBL] [Abstract][Full Text] [Related]
3. An efficient system for stable markerless integration of large biosynthetic gene clusters into Streptomyces chromosomes. Csolleiova D; Knirschova R; Rezuchova B; Homerova D; Sevcikova B; Matulova M; Núñez LE; Novakova R; Feckova L; Javorova R; Cortés J; Kormanec J Appl Microbiol Biotechnol; 2021 Mar; 105(5):2123-2137. PubMed ID: 33564923 [TBL] [Abstract][Full Text] [Related]
4. An Efficient Markerless Deletion System Suitable for the Industrial Strains of Dong J; Wei J; Li H; Zhao S; Guan W J Microbiol Biotechnol; 2021 Dec; 31(12):1722-1731. PubMed ID: 34489377 [TBL] [Abstract][Full Text] [Related]
5. Identification of biosynthetic gene clusters from metagenomic libraries using PPTase complementation in a Streptomyces host. Bitok JK; Lemetre C; Ternei MA; Brady SF FEMS Microbiol Lett; 2017 Sep; 364(16):. PubMed ID: 28817927 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5. Pait IGU; Kitani S; Kurniawan YN; Asa M; Iwai T; Ikeda H; Nihira T J Biosci Bioeng; 2017 Oct; 124(4):369-375. PubMed ID: 28533156 [TBL] [Abstract][Full Text] [Related]
7. Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Kormanec J; Rezuchova B; Homerova D; Csolleiova D; Sevcikova B; Novakova R; Feckova L Appl Microbiol Biotechnol; 2019 Jul; 103(14):5463-5482. PubMed ID: 31119353 [TBL] [Abstract][Full Text] [Related]
8. Library of Synthetic Streptomyces Regulatory Sequences for Use in Promoter Engineering of Natural Product Biosynthetic Gene Clusters. Ji CH; Kim JP; Kang HS ACS Synth Biol; 2018 Aug; 7(8):1946-1955. PubMed ID: 29966097 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of an indigoidine-like gene for a blue pigment biosynthesis in Streptomyces aureofaciens CCM 3239. Novakova R; Odnogova Z; Kutas P; Feckova L; Kormanec J Folia Microbiol (Praha); 2010 Mar; 55(2):119-25. PubMed ID: 20490753 [TBL] [Abstract][Full Text] [Related]
10. Cell-Free Synthesis of Natural Compounds from Genomic DNA of Biosynthetic Gene Clusters. Siebels I; Nowak S; Heil CS; Tufar P; Cortina NS; Bode HB; Grininger M ACS Synth Biol; 2020 Sep; 9(9):2418-2426. PubMed ID: 32818377 [TBL] [Abstract][Full Text] [Related]
11. Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. Knirschova R; Novakova R; Mingyar E; Bekeova C; Homerova D; Kormanec J J Microbiol Methods; 2015 Jun; 113():1-3. PubMed ID: 25801098 [TBL] [Abstract][Full Text] [Related]
12. Regulation of production of the blue pigment indigoidine by the pseudo γ-butyrolactone receptor FarR2 in Streptomyces lavendulae FRI-5. Kurniawan YN; Kitani S; Iida A; Maeda A; Lycklama a Nijeholt J; Lee YJ; Nihira T J Biosci Bioeng; 2016 Apr; 121(4):372-9. PubMed ID: 26375200 [TBL] [Abstract][Full Text] [Related]
13. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Bu QT; Yu P; Wang J; Li ZY; Chen XA; Mao XM; Li YQ Microb Cell Fact; 2019 Jan; 18(1):16. PubMed ID: 30691531 [TBL] [Abstract][Full Text] [Related]
14. Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Lee N; Hwang S; Lee Y; Cho S; Palsson B; Cho BK J Microbiol Biotechnol; 2019 May; 29(5):667-686. PubMed ID: 31091862 [No Abstract] [Full Text] [Related]
15. Development of a Biosensor Concept to Detect the Production of Cluster-Specific Secondary Metabolites. Sun YQ; Busche T; Rückert C; Paulus C; Rebets Y; Novakova R; Kalinowski J; Luzhetskyy A; Kormanec J; Sekurova ON; Zotchev SB ACS Synth Biol; 2017 Jun; 6(6):1026-1033. PubMed ID: 28221784 [TBL] [Abstract][Full Text] [Related]
16. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters. Ahmed Y; Rebets Y; Estévez MR; Zapp J; Myronovskyi M; Luzhetskyy A Microb Cell Fact; 2020 Jan; 19(1):5. PubMed ID: 31918711 [TBL] [Abstract][Full Text] [Related]
17. DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters. Shao Z; Zhao H Methods Enzymol; 2012; 517():203-24. PubMed ID: 23084940 [TBL] [Abstract][Full Text] [Related]
18. Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Aigle B; Corre C Methods Enzymol; 2012; 517():343-66. PubMed ID: 23084947 [TBL] [Abstract][Full Text] [Related]
19. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. Gallagher KA; Jensen PR BMC Genomics; 2015 Nov; 16():960. PubMed ID: 26578069 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces. Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561 [No Abstract] [Full Text] [Related] [Next] [New Search]