These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 33977452)
1. A User Guide for the Identification of New RiPP Biosynthetic Gene Clusters Using a RiPPER-Based Workflow. Moffat AD; Santos-Aberturas J; Chandra G; Truman AW Methods Mol Biol; 2021; 2296():227-247. PubMed ID: 33977452 [TBL] [Abstract][Full Text] [Related]
2. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321 [TBL] [Abstract][Full Text] [Related]
3. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797 [TBL] [Abstract][Full Text] [Related]
4. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. Cox CL; Doroghazi JR; Mitchell DA BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797 [TBL] [Abstract][Full Text] [Related]
5. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135 [TBL] [Abstract][Full Text] [Related]
6. Omics-based strategies to discover novel classes of RiPP natural products. Kloosterman AM; Medema MH; van Wezel GP Curr Opin Biotechnol; 2021 Jun; 69():60-67. PubMed ID: 33383297 [TBL] [Abstract][Full Text] [Related]
7. Metabolome-guided genome mining of RiPP natural products. Zdouc MM; van der Hooft JJJ; Medema MH Trends Pharmacol Sci; 2023 Aug; 44(8):532-541. PubMed ID: 37391295 [TBL] [Abstract][Full Text] [Related]
8. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Tietz JI; Schwalen CJ; Patel PS; Maxson T; Blair PM; Tai HC; Zakai UI; Mitchell DA Nat Chem Biol; 2017 May; 13(5):470-478. PubMed ID: 28244986 [TBL] [Abstract][Full Text] [Related]
9. Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Poorinmohammad N; Bagheban-Shemirani R; Hamedi J Antonie Van Leeuwenhoek; 2019 Oct; 112(10):1477-1499. PubMed ID: 31123844 [TBL] [Abstract][Full Text] [Related]
10. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Hetrick KJ; van der Donk WA Curr Opin Chem Biol; 2017 Jun; 38():36-44. PubMed ID: 28260651 [TBL] [Abstract][Full Text] [Related]
11. Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters. Malit JJL; Wu C; Liu LL; Qian PY Front Microbiol; 2021; 12():635389. PubMed ID: 33995295 [TBL] [Abstract][Full Text] [Related]
12. Automated genome mining of ribosomal peptide natural products. Mohimani H; Kersten RD; Liu WT; Wang M; Purvine SO; Wu S; Brewer HM; Pasa-Tolic L; Bandeira N; Moore BS; Pevzner PA; Dorrestein PC ACS Chem Biol; 2014 Jul; 9(7):1545-51. PubMed ID: 24802639 [TBL] [Abstract][Full Text] [Related]
13. Genome mining unveils a class of ribosomal peptides with two amino termini. Ren H; Dommaraju SR; Huang C; Cui H; Pan Y; Nesic M; Zhu L; Sarlah D; Mitchell DA; Zhao H Nat Commun; 2023 Mar; 14(1):1624. PubMed ID: 36959188 [TBL] [Abstract][Full Text] [Related]
14. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Russell AH; Truman AW Comput Struct Biotechnol J; 2020; 18():1838-1851. PubMed ID: 32728407 [TBL] [Abstract][Full Text] [Related]
15. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining. Gao Y; Zhong Z; Zhang D; Zhang J; Li YX Microbiome; 2024 May; 12(1):94. PubMed ID: 38790030 [TBL] [Abstract][Full Text] [Related]
16. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi. Kessler SC; Chooi YH Nat Prod Rep; 2022 Feb; 39(2):222-230. PubMed ID: 34581394 [TBL] [Abstract][Full Text] [Related]
17. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. Letzel AC; Pidot SJ; Hertweck C BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095 [TBL] [Abstract][Full Text] [Related]
18. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining. Agrawal P; Amir S; Deepak ; Barua D; Mohanty D J Mol Biol; 2021 May; 433(11):166887. PubMed ID: 33972022 [TBL] [Abstract][Full Text] [Related]
19. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products. Luo S; Dong SH Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555 [TBL] [Abstract][Full Text] [Related]
20. New developments in RiPP discovery, enzymology and engineering. Montalbán-López M; Scott TA; Ramesh S; Rahman IR; van Heel AJ; Viel JH; Bandarian V; Dittmann E; Genilloud O; Goto Y; Grande Burgos MJ; Hill C; Kim S; Koehnke J; Latham JA; Link AJ; Martínez B; Nair SK; Nicolet Y; Rebuffat S; Sahl HG; Sareen D; Schmidt EW; Schmitt L; Severinov K; Süssmuth RD; Truman AW; Wang H; Weng JK; van Wezel GP; Zhang Q; Zhong J; Piel J; Mitchell DA; Kuipers OP; van der Donk WA Nat Prod Rep; 2021 Jan; 38(1):130-239. PubMed ID: 32935693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]